138 research outputs found

    A review on power electronics technologies for electric mobility

    Get PDF
    Concerns about greenhouse gas emissions are a key topic addressed by modern societies worldwide. As a contribution to mitigate such effects caused by the transportation sector, the full adoption of electric mobility is increasingly being seen as the main alternative to conventional internal combustion engine (ICE) vehicles, which is supported by positive industry indicators, despite some identified hurdles. For such objective, power electronics technologies play an essential role and can be contextualized in different purposes to support the full adoption of electric mobility, including on-board and off-board battery charging systems, inductive wireless charging systems, unified traction and charging systems, new topologies with innovative operation modes for supporting the electrical power grid, and innovative solutions for electrified railways. Embracing all of these aspects, this paper presents a review on power electronics technologies for electric mobility where some of the main technologies and power electronics topologies are presented and explained. In order to address a broad scope of technologies, this paper covers road vehicles, lightweight vehicles and railway vehicles, among other electric vehicles.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by the FCT Project new ERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    A Novel Technique for Tuning PI -controller In Switched Reluctance Motor Drive for Transportation Systems

    Get PDF
    This paper presents, an optimal basic speed controller for switched reluctance motor (SRM) based on ant colony optimization (ACO) with the presence of good accuracies and performances. The control mechanism consists of proportional-integral (PI) speed controller in the outer loop and hysteresis current controller in the inner loop for the three phases, 6/4 switched reluctance motor. Because of nonlinear characteristics of a SRM, ACO algorithm is employed to tune coefficients of PI speed controller by minimizing the time domain objective function. Simulations of ACO based control of SRM are carried out using MATLAB /SIMULINK software. The behavior of the proposed ACO has been estimated with the classical Ziegler- Nichols (ZN) method in order to prove the proposed approach is able to improve the parameters of PI chosen by ZN method. Simulations results confirm the better behavior of the optimized PI controller based on ACO compared with optimized PI controller based on classical Ziegler-Nichols method

    Torque Controlled Drive for Permanent Magnet Direct Current Brushless Motors

    Get PDF
    This thesis describes the design and implementation of a simple variable speed drive (VSD) based on a brushless direct current (BLDC) machine and discrete logic circuits. A practical VSD was built, capable of operating a BLDC machine in two quadrants, motoring and regenerative braking. The intended applications are electric scooters and electric bicycles, where the recovered energy from braking extends the range of the vehicle. A conceptual four quadrant VSD, suitable for three and four wheelers requiring reverse operation, was designed and tested in simulation. Simplicity was emphasized in this design to help achieve a robust, easy to analyse system. The versatility of multi-function gate integrated circuits (ICs) made them ideal for implementing the commutation logic and keeping the system simple. The BLDC machine has sensors with a resolution of 60 ed to determine rotor position. An electronic commutator or phase switcher module interprets the position signals and produces a switching pattern. This effectively transforms the BLDC machine into a direct current (DC) brushed machine. A synchronous step down converter controls the BLDC machine current with a tolerance band scheme. This module treats the BLDC machine as if it was a DC machine. The leakage inductance of the electric machine is used as the inductive filter element. The unipolar switching scheme used ensures that current flows out of the battery only for motoring operation and into the battery only during regeneration. The current and torque are directly related in a DC brushed machine. The action of an electronic commutator or phase switcher creates that same relationship between torque and current in a BLDC machine. Torque control is achieved in the BLDC machine using a single channel current controller. The phase switcher current is monitored and used to control the duty ratio of the synchronous converter switches. Successful operation of the practical VSD was achieved in two quadrants: forwards motoring and forwards regenerating. The maximum tested power outputs were 236W in motoring mode and 158W in regenerating mode. The output torque could be smoothly controlled from a positive to a negative value. iv v Simulation of the conceptual four quadrant design was successful in all the motoring, generating and active braking zones. The required manipulation of logic signals to achieve this type of operation was done automatically while the machine was running. The resulting output torque is smoothly controlled in all of the operating zones. Commutation at certain speeds and torques are handled better by some topologies than others. Some current sensing strategies adversely affect instantaneous phase currents under certain conditions. The final design chose the method where phase currents experience no overshoot, minimizing component stress. The battery, or energy storage system, used in verifying the operation of the VSD in the practical electric bicycle was found to be the most limiting component. In regenerating mode, the low charge acceptance rate of the battery reduced the maximum retarding torque and energy recovery rate

    Second International Symposium on Magnetic Suspension Technology, part 2

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, the 2nd International Symposium on Magnetic Suspension Technology was held at the Westin Hotel in Seattle, WA, on 11-13 Aug. 1993. The symposium included 18 technical sessions in which 44 papers were presented. The technical sessions covered the areas of bearings, bearing modelling, controls, vibration isolation, micromachines, superconductivity, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), rotating machinery and energy storage, and applications. A list of attendees appears at the end of the document

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Definition and verification of a set of reusable reference architectures for hybrid vehicle development

    Get PDF
    Current concerns regarding climate change and energy security have resulted in an increasing demand for low carbon vehicles, including: more efficient internal combustion engine vehicles, alternative fuel vehicles, electric vehicles and hybrid vehicles. Unlike traditional internal combustion engine vehicles and electric vehicles, hybrid vehicles contain a minimum of two energy storage systems. These are required to deliver power through a complex powertrain which must combine these power flows electrically or mechanically (or both), before torque can be delivered to the wheel. Three distinct types of hybrid vehicles exist, series hybrids, parallel hybrids and compound hybrids. Each type of hybrid presents a unique engineering challenge. Also, within each hybrid type there exists a wide range of configurations of components, in size and type. The emergence of this new family of hybrid vehicles has necessitated a new component to vehicle development, the Vehicle Supervisory Controller (VSC). The VSC must determine and deliver driver torque demand, dividing the delivery of that demand from the multiple energy storage systems as a function of efficiencies and capacities. This control component is not commonly a standalone entity in traditional internal combustion vehicles and therefore presents an opportunity to apply a systems engineering approach to hybrid vehicle systems and VSC control system development. A key non-­‐functional requirement in systems engineering is reusability. A common method for maximising system reusability is a Reference Architecture (RA). This is an abstraction of the minimum set of shared system features (structure, functions, interactions and behaviour) that can be applied to a number of similar but distinct system deployments. It is argued that the employment of RAs in hybrid vehicle development would reduce VSC development time and cost. This Thesis expands this research to determine if one RA is extendable to all hybrid vehicle types and combines the scientific method with the scenario testing method to verify the reusability of RAs by demonstration. A set of hypotheses are posed: Can one RA represent all hybrid types? If not, can a minimum number of RAs be defined which represents all hybrid types? These hypotheses are tested by a set of scenarios. The RA is used as a template for a vehicle deployment (a scenario), which is then tested numerically, thereby verifying that the RA is valid for this type of vehicle. This Thesis determines that two RAs are required to represent the three hybrid vehicle types. One RA is needed for series hybrids, and the second RA covers parallel and compound hybrids. This is done at a level of abstraction which is high enough to avoid system specific features but low enough to incorporate detailed control functionality. One series hybrid is deployed using the series RA into simulation, hardware and onto a vehicle for testing. This verifies that the series RA is valid for this type of vehicle. The parallel RA is used to develop two sub-­‐types of parallel hybrids and one compound hybrid. This research has been conducted with industrial partners who value, and are employing, the findings of this research in their hybrid vehicle development programs

    How the Car Won the Road: The Surrender of Atlanta\u27s City Streets, 1920-1929

    Get PDF
    In 1899, Atlantans saw their city streets as multi-purpose open spaces, freely available to all persons and transit modes. By 1929, that understanding had changed. Streets became automobile conduits to rapidly and efficiently move motor vehicles around town. Other modes of transportation had disappeared or been marginalized. New government regulations tightly controlled or banished other street users and uses. Vast amounts of municipal space became the domain of automobiles, losing the democratic values which public roads formerly represented. This study will demonstrate that during the 1920s, Atlanta’s powerful elites brought about this transformation of society’s comprehension of the meaning and function of a city street. Seeing the automobile as the essential tool for city expansion, this pro-growth coalition directly intervened in state and municipal government to enact laws favoring motor vehicles. They sought and won the allocation of public funds to build the physical infrastructure and legislative superstructure to facilitate the presence of cars on city streets. The print media marketed the changed definition of street space, and promoted the automobile as a status symbol and a way to escape the always-contentious, multi-racial streetcars. Realtors and investors urged better roads for automobile access to their burgeoning suburban developments. While the transformative process took root and sprouted between 1900 and 1919, the twenties witnessed the bulk of the efforts of the growth alliance to remake Atlanta’s city streets. No longer a luxury vehicle for the very rich, by 1920, the car had emerged as a necessity for all but the poorest citizens. Utilizing modern marketing methods and innovative business strategies, automakers helped emplace a national culture of consumption. Advertisements urged Atlantans to go into debt to purchase the latest models, while the local government struggled to cope with traffic gridlock and outrageous numbers of auto-related fatalities. Blaming streetcars for the congestion, business and civic leaders also increasingly faulted pedestrians and children for their own injuries and deaths—they should not have strayed onto streets which no longer belonged to everyone. By 1929, Atlanta’s leadership had surrendered the city streets to the automobile; the car had “won” the road

    Transitions in Motion: Accelerating Active Travel Infrastructure in London through Grassroots Groups and Activist Researchers

    Get PDF
    Active transport plans and infrastructure transition plays a key role in reducing global greenhouse gas emissions and various health issues faced in London, yet has not occurred at a speed required for mitigation or even achieving stated targets and goals. While socio-technical transition research has often focused on the historical perspective and the technical aspects of a transition, it has dwelt less on the process of transition in motion. In particular, the role of grassroots movements in accelerating transitions and the social aspects of creating transitions. Utilising participatory action research and an adapted bridging methodology, this research aims to analyse mechanisms for speeding up active transport policy and infrastructure transitions. It intertwines three layers of bridging methodologies across policy and practice, namely the initiative-based learning (e.g. cycling campaigns), socio-technical analysis, and quantitative modelling. The initiative-based learning was enacted as participatory action research, with myself as an activist researcher, working in partnership with grassroots movements campaigning for active transport infrastructure and policy changes. The ‘Framework for Change’ is a template trialed in this research provided the practical connection to the theoretical socio-technical transition literature. This research project highlight the opportunities and obstacles to accelerate transitions in motion specifically for grassroots movements. The empirical findings suggest that by coupling grassroots and activist researchers, it is possible to create micro-accelerations and influence urban changes towards sustainability. Further, that using the ‘Framework for Change’ can upskill activists and form a template for other campaigns. The findings also suggest that the most important parts of the Framework for Change are building coalitions, creating measurable goals and visions, and understanding who can change policy and infrastructure. My research highlights how actions and events that unfolded represent micro-accelerations or microdecelerations and can lead to better understanding of potential transition pathways and transition goals. It further highlights that grassroots’ movements have much to offer in understanding the social and political changes required for sustainable socio-technical transitions. More research into the social rather than the technical factors could speed up the pace and expand the scale of the transition required for climate change adaptation and healthy built environment outcomes

    Electrical Age (v. 19)

    Get PDF

    Designing sound : procedural audio research based on the book by Andy Farnell

    Get PDF
    In procedural media, data normally acquired by measuring something, commonly described as sampling, is replaced by a set of computational rules (procedure) that defines the typical structure and/or behaviour of that thing. Here, a general approach to sound as a definable process, rather than a recording, is developed. By analysis of their physical and perceptual qualities, natural objects or processes that produce sound are modelled by digital Sounding Objects for use in arts and entertainments. This Thesis discusses different aspects of Procedural Audio introducing several new approaches and solutions to this emerging field of Sound Design.Em Media Procedimental, os dados os dados normalmente adquiridos através da medição de algo habitualmente designado como amostragem, são substituídos por um conjunto de regras computacionais (procedimento) que definem a estrutura típica, ou comportamento, desse elemento. Neste caso é desenvolvida uma abordagem ao som definível como um procedimento em vez de uma gravação. Através da análise das suas características físicas e perceptuais , objetos naturais ou processos que produzem som, são modelados como objetos sonoros digitais para utilização nas Artes e Entretenimento. Nesta Tese são discutidos diferentes aspectos de Áudio Procedimental, sendo introduzidas várias novas abordagens e soluções para o campo emergente do Design Sonoro
    corecore