549 research outputs found

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Maximizing the Sum Rate in Cellular Networks Using Multi-Convex Optimization

    Full text link
    In this paper, we propose a novel algorithm to maximize the sum rate in interference-limited scenarios where each user decodes its own message with the presence of unknown interferences and noise considering the signal-to-interference-plus-noise-ratio. It is known that the problem of adapting the transmit and receive filters of the users to maximize the sum rate with a sum transmit power constraint is non-convex. Our novel approach is to formulate the sum rate maximization problem as an equivalent multi-convex optimization problem by adding two sets of auxiliary variables. An iterative algorithm which alternatingly adjusts the system variables and the auxiliary variables is proposed to solve the multi-convex optimization problem. The proposed algorithm is applied to a downlink cellular scenario consisting of several cells each of which contains a base station serving several mobile stations. We examine the two cases, with or without several half-duplex amplify-and-forward relays assisting the transmission. A sum power constraint at the base stations and a sum power constraint at the relays are assumed. Finally, we show that the proposed multi-convex formulation of the sum rate maximization problem is applicable to many other wireless systems in which the estimated data symbols are multi-affine functions of the system variables.Comment: 24 pages, 5 figure

    Limited Feedback Design for Interference Alignment on MIMO Interference Networks with Heterogeneous Path Loss and Spatial Correlations

    Full text link
    Interference alignment is degree of freedom optimal in K -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations, and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design, and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as C_{s}\cdot\log\textrm{SNR}, the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient C_{s} can be significantly reduced in networks with asymmetric interference topology.Comment: 30 pages, 6 figures, accepted by IEEE transactions on signal processing in Feb. 201

    Deployment of clustered-based small cells in interference-limited dense scenarios: analysis, design and trade-offs

    Get PDF
    Network densification is one of the most promising solutions to address the high data rate demands in 5G and beyond (B5G) wireless networks while ensuring an overall adequate quality of service. In this scenario, most users experience significant interference levels from neigh-bouring mobile stations (MSs) and access points (APs) making the use of advanced interference management techniques mandatory. Clustered interference alignment (IA) has been widely pro-posed to manage the interference in densely deployed scenarios with a large number of users. Nonetheless, the setups considered in previous works are still far from the densification lev-els envisaged for 5G/B5G networks that are considered in this paper. Moreover, prior designs of clustered-IA systems relied on oversimplified channel models and/or enforced single-stream transmission. In this paper, we explore an ultradense deployment of small-cells (SCs) to pro-vide coverage in 5G/B5G wireless networks. A novel cluster design based on size-restricted k-means algorithm to divide the SCs into different clusters is proposed taking into account path loss and shadowing effects, thus providing a more realistic solution than those available in the current literature. Unlike previous works, this clustering method can also cater for spatial mul-tiplexing scenarios. Also, several design parameters such as the number of transmit antennas, multiplexed data streams, and deployed APs are analyzed in order to identify trade-offs between performance and complexity. The relationship between density of network elements per area unit and performance is investigated, thus allowing to illustrate that there is an optimal coverage area value over which the network resources should be distributed. Moreover, it is shown that the spectral-efficiency degradation due to the inter-cluster interference in ultra-dense networks (UDNs) points to the need of designing an interference management algorithm that accounts for both, intra-cluster and inter-cluster interference. Simulation results provide key insights for the deployment of small cells in interference-limited dense scenarios.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391. We also acknowledge the Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigacion (AEI) and the European Regional Development Funds (ERDF) for its support to the Spanish National Project TERESA (subprojects TEC2017-90093-C3-2-R and TEC2017-90093-C3-3-R).Publicad

    Interference Coordination via Power Domain Channel Estimation

    Full text link
    A novel technique is proposed which enables each transmitter to acquire global channel state information (CSI) from the sole knowledge of individual received signal power measurements, which makes dedicated feedback or inter-transmitter signaling channels unnecessary. To make this possible, we resort to a completely new technique whose key idea is to exploit the transmit power levels as symbols to embed information and the observed interference as a communication channel the transmitters can use to exchange coordination information. Although the used technique allows any kind of {low-rate} information to be exchanged among the transmitters, the focus here is to exchange local CSI. The proposed procedure also comprises a phase which allows local CSI to be estimated. Once an estimate of global CSI is acquired by the transmitters, it can be used to optimize any utility function which depends on it. While algorithms which use the same type of measurements such as the iterative water-filling algorithm (IWFA) implement the sequential best-response dynamics (BRD) applied to individual utilities, here, thanks to the availability of global CSI, the BRD can be applied to the sum-utility. Extensive numerical results show that significant gains can be obtained and, this, by requiring no additional online signaling
    • …
    corecore