1,093 research outputs found

    A Survey of Non-conventional Techniques for Low-voltage Low-power Analog Circuit Design

    Get PDF
    Designing integrated circuits able to work under low-voltage (LV) low-power (LP) condition is currently undergoing a very considerable boom. Reducing voltage supply and power consumption of integrated circuits is crucial factor since in general it ensures the device reliability, prevents overheating of the circuits and in particular prolongs the operation period for battery powered devices. Recently, non-conventional techniques i.e. bulk-driven (BD), floating-gate (FG) and quasi-floating-gate (QFG) techniques have been proposed as powerful ways to reduce the design complexity and push the voltage supply towards threshold voltage of the MOS transistors (MOST). Therefore, this paper presents the operation principle, the advantages and disadvantages of each of these techniques, enabling circuit designers to choose the proper design technique based on application requirements. As an example of application three operational transconductance amplifiers (OTA) base on these non-conventional techniques are presented, the voltage supply is only ±0.4 V and the power consumption is 23.5 ”W. PSpice simulation results using the 0.18 ”m CMOS technology from TSMC are included to verify the design functionality and correspondence with theory

    High-frequency two-input CMOS OTA for continuous-time filter applications

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A high-frequency fully differential CMOS operational transconductance amplifier (OTA) is presented for continuous-time filter applications in the megahertz range. The proposed design technique combines a linear cross-coupled quad input stage with an enhanced folded-cascode circuit to increase the output resistance of the amplifier. SPICE simulations show that DC-gain enhancement can be obtained without significant bandwidth limitation. The two-input OTA developed is used in high-frequency tuneable filter design based on IFLF and LC ladder simulation structures. Simulated results of parameters and characteristics of the OTA and filters in a standard 1.2 ÎŒm CMOS process (MOSIS) are presented. A tuning circuit is also discussed.Peer reviewe

    Low-Voltage Analog Circuit Design Using the Adaptively Biased Body-Driven Circuit Technique

    Get PDF
    The scaling of MOSFET dimensions and power supply voltage, in conjunction with an increase in system- and circuit-level performance requirements, are the most important factors driving the development of new technologies and design techniques for analog and mixed-signal integrated circuits. Though scaling has been a fact of life for analog circuit designers for many years, the approaching 1-V and sub-1-V power supplies, combined with applications that have increasingly divergent technology requirements, means that the analog and mixed-signal IC designs of the future will probably look quite different from those of the past. Foremost among the challenges that analog designers will face in highly scaled technologies are low power supply voltages, which limit dynamic range and even circuit functionality, and ultra-thin gate oxides, which give rise to significant levels of gate leakage current. The goal of this research is to develop novel analog design techniques which are commensurate with the challenges that designers will face in highly scaled CMOS technologies. To that end, a new and unique body-driven design technique called adaptive gate biasing has been developed. Adaptive gate biasing is a method for guaranteeing that MOSFETs in a body-driven simple current mirror, cascode current mirror, or regulated cascode current source are biased in saturation—independent of operating region, temperature, or supply voltage—and is an enabling technology for high-performance, low-voltage analog circuits. To prove the usefulness of the new design technique, a body-driven operational amplifier that heavily leverages adaptive gate biasing has been developed. Fabricated on a 3.3-V/0.35-ÎŒm partially depleted silicon-onv-insulator (PD-SOI) CMOS process, which has nMOS and pMOS threshold voltages of 0.65 V and 0.85 V, respectively, the body-driven amplifier displayed an open-loop gain of 88 dB, bandwidth of 9 MHz, and PSRR greater than 50 dB at 1-V power supply

    Analysis of circuit conditions for optimum intermodulation and gain in bipolar cascomp amplifiers with non-ideal error correction

    Get PDF
    The cascoded-compensation or ‘Cascomp’ amplifier offers excellent distortion reduction and thermal distortion rejection, but has not seen widespread use because of a limited gain and increased complexity compared with other topologies. The original theory showed that with the addition of an ideal error amplifier the circuit will completely compensate distortion for suitably chosen degeneration and bias values. This research presents a new, rigorous mathematical proof for conditions of compensation. The authors further develop the proof to include the non-idealities of the error amplifier. It is shown that there exists a second bias point, not exposed by the original analysis that offers improved gain while maintaining distortion cancellation. By reducing the error amplifier degeneration resistance, one can increase a Cascomp circuit's overall gain by several dB while maintaining theoretically perfect distortion compensation. A robust bias point is proposed, which takes the advantage of this new theory by optimising circuit values resulting in a comparatively broader and deeper third-order distortion null. The proposed theory is confirmed with simulation and measurement that show agreement within the bounds of process and component error limits

    Time-domain optimization of amplifiers based on distributed genetic algorithms

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer EngineeringThe work presented in this thesis addresses the task of circuit optimization, helping the designer facing the high performance and high efficiency circuits demands of the market and technology evolution. A novel framework is introduced, based on time-domain analysis, genetic algorithm optimization, and distributed processing. The time-domain optimization methodology is based on the step response of the amplifier. The main advantage of this new time-domain methodology is that, when a given settling-error is reached within the desired settling-time, it is automatically guaranteed that the amplifier has enough open-loop gain, AOL, output-swing (OS), slew-rate (SR), closed loop bandwidth and closed loop stability. Thus, this simplification of the circuit‟s evaluation helps the optimization process to converge faster. The method used to calculate the step response expression of the circuit is based on the inverse Laplace transform applied to the transfer function, symbolically, multiplied by 1/s (which represents the unity input step). Furthermore, may be applied to transfer functions of circuits with unlimited number of zeros/poles, without approximation in order to keep accuracy. Thus, complex circuit, with several design/optimization degrees of freedom can also be considered. The expression of the step response, from the proposed methodology, is based on the DC bias operating point of the devices of the circuit. For this, complex and accurate device models (e.g. BSIM3v3) are integrated. During the optimization process, the time-domain evaluation of the amplifier is used by the genetic algorithm, in the classification of the genetic individuals. The time-domain evaluator is integrated into the developed optimization platform, as independent library, coded using C programming language. The genetic algorithms have demonstrated to be a good approach for optimization since they are flexible and independent from the optimization-objective. Different levels of abstraction can be optimized either system level or circuit level. Optimization of any new block is basically carried-out by simply providing additional configuration files, e.g. chromosome format, in text format; and the circuit library where the fitness value of each individual of the genetic algorithm is computed. Distributed processing is also employed to address the increasing processing time demanded by the complex circuit analysis, and the accurate models of the circuit devices. The communication by remote processing nodes is based on Message Passing interface (MPI). It is demonstrated that the distributed processing reduced the optimization run-time by more than one order of magnitude. Platform assessment is carried by several examples of two-stage amplifiers, which have been optimized and successfully used, embedded, in larger systems, such as data converters. A dedicated example of an inverter-based self-biased two-stage amplifier has been designed, laid-out and fabricated as a stand-alone circuit and experimentally evaluated. The measured results are a direct demonstration of the effectiveness of the proposed time-domain optimization methodology.Portuguese Foundation for the Science and Technology (FCT

    Energy-efficient amplifiers based on quasi-floating gate techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage ultra low power amplifiers can be designed preserving at the same time excellent small-signal and large-signal performance.This research was funded by AEI/FEDER, grant number PID2019-107258RB-C32

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Energy-Efficient Amplifiers Based on Quasi-Floating Gate Techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage, energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example, including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage, ultra-low-power amplifiers can be designed, preserving, at the same time, excellent small-signal and large-signal performance.Agencia Estatal de InvestigaciĂłn PID2019-107258RB-C32UniĂłn Europea PID2019-107258RB-C3
    • 

    corecore