6,116 research outputs found
Inference and Evaluation of the Multinomial Mixture Model for Text Clustering
In this article, we investigate the use of a probabilistic model for
unsupervised clustering in text collections. Unsupervised clustering has become
a basic module for many intelligent text processing applications, such as
information retrieval, text classification or information extraction. The model
considered in this contribution consists of a mixture of multinomial
distributions over the word counts, each component corresponding to a different
theme. We present and contrast various estimation procedures, which apply both
in supervised and unsupervised contexts. In supervised learning, this work
suggests a criterion for evaluating the posterior odds of new documents which
is more statistically sound than the "naive Bayes" approach. In an unsupervised
context, we propose measures to set up a systematic evaluation framework and
start with examining the Expectation-Maximization (EM) algorithm as the basic
tool for inference. We discuss the importance of initialization and the
influence of other features such as the smoothing strategy or the size of the
vocabulary, thereby illustrating the difficulties incurred by the high
dimensionality of the parameter space. We also propose a heuristic algorithm
based on iterative EM with vocabulary reduction to solve this problem. Using
the fact that the latent variables can be analytically integrated out, we
finally show that Gibbs sampling algorithm is tractable and compares favorably
to the basic expectation maximization approach
Classification software technique assessment
A catalog of software options is presented for the use of local user communities to obtain software for analyzing remotely sensed multispectral imagery. The resources required to utilize a particular software program are described. Descriptions of how a particular program analyzes data and the performance of that program for an application and data set provided by the user are shown. An effort is made to establish a statistical performance base for various software programs with regard to different data sets and analysis applications, to determine the status of the state-of-the-art
- …
