584 research outputs found

    Estimación de flujos de agua entre suelo, vegetación y atmósfera mediante teledetección = Water fluxes estimation between soil, vegetation and atmosphere using remote sensing

    Get PDF
    En la frontera entre la superficie terrestre y la atmósfera se producen numerosos procesos físicos relacionados con el ciclo hidrológico. Cuando se producen precipitaciones en forma de lluvia, y el agua alcanza la superficie terrestre, una parte llega al suelo y otra parte puede ser interceptada por la vegetación. La fracción que llega al suelo se infiltra en la zona no saturada donde se almacena, lo humedece, disuelve los elementos que son absorbidos posteriormente por la vegetación y modifica las propiedades físicas del suelo. Para que la vegetación pueda desarrollarse es necesario que la planta abra los estomas, absorba CO2 y realice la fotosíntesis. Durante este proceso se produce una pérdida de agua a través de la hoja, que si es lo suficientemente grande puede llegar a hacer que la planta marchite si no es capaz de reponerla del suelo. El agua del suelo es devuelta a la atmósfera posteriormente mediante la evaporación y la transpiración de las plantas. La primera parte del trabajo se ha centrado en la estimación de parámetros biofísicos y estructurales de la vegetación, concretamente los relacionados con el contenido de agua. Para ello se han empleado numerosos datos recogidos en campo a lo largo de dos años fenológicos completos y se relacionaron con las medidas espectrales a dos escalas diferentes, campo y sensor MODIS (500 m). El contenido de agua se calculó usando tres métricas diferentes calculadas a partir de la misma muestra, el Contenido de Humedad de la Vegetación (FMC), el Espesor Equivalente de Agua (EWT) y el Contenido de Agua del Dosel (CWC). Además se usaron dos estimaciones a partir de Modelos de Transferencia Radiativa (RTM) para la obtención del FMC y CWC que fueron comparados con las obtenidas a partir de los modelos empíricos creados a partir los índices espectrales. Otras variables relacionadas como el contenido de materia seca (Dm) y el índice de área foliar (LAI) fueron también evaluadas usando índices de vegetación. Entre los resultados destacables de este estudio se encuentran en primer lugar los relacionados con el protocolo de recogida de datos en campo. En este estudio se obtuvieron evidencias de que las diferencias temporales a la hora de recoger datos en campo son más importantes que las diferencias espaciales en este ecosistema. Además se demostró la necesidad de mostrar consistencia en el protocolo de muestreo: tamaño de la muestra, hora de recogida de las muestras, etc. y en la importancia de evitar, en lo posible la toma de decisiones, generalmente subjetivas, por parte de los operadores de campo. Otro resultado destacable ha sido demostrar la existencia de una alta variabilidad del Dm a lo largo del año. Esto indica que asumir, como sugieren algunos autores, un valor constante de Dm para la estimación del espesor equivalente de agua a partir del contenido de humedad de la vegetación no es una opción viable en este ecosistema. De los índices de vegetación que fueron comparados en el estudio, el que presentó menores correlaciones fue el Índice de Vegetación Resistente a la Atmósfera (VARI). Se observaron algunas diferencias en el comportamiento de los modelos empíricos obtenidos con MODIS y las producidas a partir de medidas espectrales de campo, obteniendo resultados algo mejores en el caso de MODIS. Este hecho posiblemente sea debido a que las adquisiciones de del sensor MODIS presentan diferentes ángulos de observación, lo que reduce la proporción de suelo captada por el sensor y por lo tanto capturando una mayor proporción del dosel. La comparación entre los modelos empíricos y las estimaciones a partir de RTM demostró que en este caso los modelos empíricos aún mejoran las estimaciones de los modelos físicos desarrollados en zonas similares para estimar el contenido de humedad de la vegetación. La segunda parte del trabajo se ha centrado en la estimación del contenido de humedad del suelo combinando datos ópticos y térmicos mediante el cálculo del Índice de Temperatura y Sequedad de la Vegetación (TVDI) cuya obtención se basa en la técnica del triángulo. Se han investigado diferentes factores que afectan a la definición del triángulo, y cómo estos afectan los valores del TVDI y a su relación final con el contenido de humedad del suelo. En este trabajo se introdujo una modificación al cálculo del TVDI en la que se sustituyó el Índice de Vegetación de Diferencia Normalizada (NDVI) por el Índice de Diferencia Infraroja Normalizada (NDII). Esta modificación se tradujo en una mejora en el comportamiento de los modelos empíricos para estimar el contenido de humedad del suelo. Finalmente en la tesis se investiga el comportamiento de la EF en la zona de estudio y su estimación a partir de teledetección. El principal motivo del empleo de la EF es que ha sido ampliamente utilizada para estimar la evapotranspiración diaria, asumiendo que la EF es constante a lo largo del día. A partir de las medidas recogidas por una torre de flujos se han evaluado las variaciones diarias y se han validado las estimaciones de EF calculadas a partir de imágenes Landsat. Se ha usado una nueva versión modificada de la técnica del triángulo en la que se ha introducido el índice de área foliar adaptado a la escala Landsat a partir del producto MODIS (de 1 km a 30 m) como sustituto del índice de vegetación. Además se muestra un innovador método basado en las estadísticas propias del triángulo para la selección de las fechas a incluir en el análisis estadístico. La validación de las estimaciones de EF se ha llevado a cabo de dos maneras diferentes: usando las contribuciones de todos los pixeles incluidos en la zona de influencia de la torre; y utilizando el valor del único pixel correspondiente a la localización de la torre, mostrando ambas aproximaciones escasas diferencias en cuanto a resultados. Además se han comparado las EF diarias y la correspondiente a la hora de la pasada de Landsat sobre la zona de estudio. En este caso se observaron mayores diferencias, lo cual indica que el supuesto de una EF constante a lo largo del día ha de ser tomada con ciertas precauciones si el objetivo final es el cálculo de la evapotranspiración diaria

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Remote Sensing Of Rice-Based Irrigated Agriculture: A Review

    Get PDF
    The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the extensive breeding programs that have led to the many improved rice varieties that are now planted on more than 60% of the world’s riceland (Khush, 1987). This revolution led to increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987). Similar trends have also been seen in the Irrigation Areas and Districts of southern New South Wales (NSW) as the local breeding program has produced many improved varieties of rice adapted to local growing conditions since the 1960’s (Brennan et al., 1994). Increases in area of rice planted, rice quality, and paddy yield resulted (Brennan et al., 1994). Increased rice area, however, has led to the development of high water tables and risk of large tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b). These concerns have led to various environmental regulations on rice in the region, culminating in 1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted (Humphreys et al., 1994b). Strict environmental restrictions in combination with large areas of land make the management of this region a difficult task. Land managers require, among other things, a way of regulating water use, assessing or predicting crop area and productivity, and making management decisions in support of environmentally and economically sustainable agriculture. In the search for more time and cost effective methods for attaining these goals, while monitoring complex management situations, many have turned to remote sensing and Geographic Information System (GIS) technologies for assistance. The spectral information and spatial density of remote sensing data lends itself well to the measurement of large areas. Since the launch of LANDSAT-1 in 1972, this technology has been used extensively in agricultural systems for crop identification and area estimation, crop yield estimation and prediction, and crop damage assessment. The incorporation of remote sensing and GIS can also help integrate management practices and develop effective management plans. However, in order to take advantage of these tools, users must have an understanding of both what remote sensing is and what sensors are now available, and how the technology is being used in applied agricultural research. Accordingly, a description of both follows: first a description of the technology, and then how it is currently being applied. The applications of remote sensing relevant to this discussion can be separated into crop type identification; crop area measurement; crop yield; crop damage; water use/ moisture availability (ma) mapping; and water use efficiency monitoring/mapping. This report focuses on satellite remote sensing for broad-scale rice-based irrigation agricultural applications. It also discusses related regional GIS analyses that may or may not include remote sensing data, and briefly addresses other sources of finer-scale remote sensing and geospatial data as they relate to agriculture. Since a complete review of the remote sensing research was not provided in the rice literature alone, some generic agricultural issues have been learned from applications not specifically dealing with rice. Remote sensing specialists may wish to skip to section 2

    Remote Sensing Of Rice-Based Irrigated Agriculture: A Review

    Get PDF
    The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the extensive breeding programs that have led to the many improved rice varieties that are now planted on more than 60% of the world’s riceland (Khush, 1987). This revolution led to increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987). Similar trends have also been seen in the Irrigation Areas and Districts of southern New South Wales (NSW) as the local breeding program has produced many improved varieties of rice adapted to local growing conditions since the 1960’s (Brennan et al., 1994). Increases in area of rice planted, rice quality, and paddy yield resulted (Brennan et al., 1994). Increased rice area, however, has led to the development of high water tables and risk of large tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b). These concerns have led to various environmental regulations on rice in the region, culminating in 1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted (Humphreys et al., 1994b). Strict environmental restrictions in combination with large areas of land make the management of this region a difficult task. Land managers require, among other things, a way of regulating water use, assessing or predicting crop area and productivity, and making management decisions in support of environmentally and economically sustainable agriculture. In the search for more time and cost effective methods for attaining these goals, while monitoring complex management situations, many have turned to remote sensing and Geographic Information System (GIS) technologies for assistance. The spectral information and spatial density of remote sensing data lends itself well to the measurement of large areas. Since the launch of LANDSAT-1 in 1972, this technology has been used extensively in agricultural systems for crop identification and area estimation, crop yield estimation and prediction, and crop damage assessment. The incorporation of remote sensing and GIS can also help integrate management practices and develop effective management plans. However, in order to take advantage of these tools, users must have an understanding of both what remote sensing is and what sensors are now available, and how the technology is being used in applied agricultural research. Accordingly, a description of both follows: first a description of the technology, and then how it is currently being applied. The applications of remote sensing relevant to this discussion can be separated into crop type identification; crop area measurement; crop yield; crop damage; water use/ moisture availability (ma) mapping; and water use efficiency monitoring/mapping. This report focuses on satellite remote sensing for broad-scale rice-based irrigation agricultural applications. It also discusses related regional GIS analyses that may or may not include remote sensing data, and briefly addresses other sources of finer-scale remote sensing and geospatial data as they relate to agriculture. Since a complete review of the remote sensing research was not provided in the rice literature alone, some generic agricultural issues have been learned from applications not specifically dealing with rice. Remote sensing specialists may wish to skip to section 2

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    Integration of an unmanned aircraft system and ground-based remote sensing to estimate spatially distributed crop evapotranspiration and soil water deficit throughout the vegetation soil root zone

    Get PDF
    2016 Spring.Includes bibliographical references.Irrigation is the largest consumer of fresh water and produces over 40% of the world’s food and fiber supply. As the world’s population continues to grow rapidly, the increased demands on fresh water will force the agricultural community to improve the efficiency and productivity of irrigation systems, while reducing overall water usage. In order to address the requirements of increased efficiency and productivity in agricultural water use, the agricultural community has begun to focus on the development of precision agriculture (PA) irrigation management systems for use with irrigated agriculture. Remote sensing (RS) is at the forefront of the PA movement, allowing the estimation of spatially distributed crop water requirements on a large-scale basis. Techniques using ground, aerial and space-borne RS platforms, have been developed to estimate actual crop evapotranspiration (ETa) and soil water deficit (SWD) for use in PA irrigation management systems. The ability to monitor the ETa and SWD allows irrigators to manage their irrigation to increase efficiency and decrease overall water use while maintaining crop yields goals. Historically, remote sensing data, such as spectral reflectance and thermal infrared (TIR) imagery, were provided by ground or space-borne RS platforms, like NASA’s Landsat 8 satellites. Though these methods are effective at estimating ETa over large areas, their lack of spatial and temporal resolution limit their effectiveness for application in PA irrigation management systems. In order to address the required spatial and temporal resolutions required for PA systems, Colorado State University (CSU) developed an unmanned aircraft system (UAS) RS platform capable of collecting high spatial and temporal resolution data in the TIR, near-infrared (NIR), red and green bands of the electromagnetic spectrum. During the summer of 2015, CSU conducted four flights over corn at the Agriculture Research Development and Education Center (ARDEC), near Fort Collins, CO, with the Tempest UAS RS platform in order to collect thermal and multispectral imagery. The RS data collected over the ARDEC test location were used in three studies. The first was the comparison of the raw RS data to the ground-based RS data collected during the RS overpasses. The second study used the Tempest RS data to estimate the ETa using four methods: two methods based on the surface energy balance (Two-Source Energy Balance (TSEB) and the Surface Aerodynamic Temperature (SAT)), one method based on the TIR imagery (Crop Water Stress Index (CWSI)), and one method based on the spectral reflectance imagery (reflectance-based crop coefficients (kcbrf)) and reference ET. Remote sensing derived ETa estimates were compared to ETa derived using neutron probe soil moisture sensors. The third study utilized the RS derived ETa and the Hybrid Soil Water Balance method to estimate the SWD for comparison with the neutron probe derived SWD. Results showed that the Tempest RS data was in good agreement with the ground-based data as demonstrate by the low RMSE of the raw data, ETa and SWD calculations (TIR = 5.68 oC, NIR = 5.26 % reflectance, red = 3.51 % reflectance, green = 7.31 % reflectance, TSEB ETa = 0.89 mm/d, Hybrid SWD = 16.19 mm/m). The accuracy of the results of the Tempest UAS RS platform suggests that UAS RS platforms have the potential to increase the accuracy of ETa and SWD estimation for use in the application of a PA irrigation management system

    Estimation of Surface Moisture Content and Evapotranspiration Using Weightage Approach.

    Get PDF
    Soil moisture (MC) and evapotranspiration (ET) are considered as the most significant boundary conditions controlling most of the hydrological cycle’s processes. However, monitoring them continuously over large areas using the high temporal-resolution optical satellites is very demanding. Satellites such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), have a coarse spatial resolution in their images. Thus it not only impedes the acquisition of an accurate MC and ET but also represents multispectral reflections from the holistic surface features. This beside their dependence on vegetation and ground coefficient when assessing MC and ET. The study aims to enhance the spatial accuracy by weighting the MC produced from different surface cover classes within the pixel. MC for each pixel is segmented into three (3) different classes namely urban, vegetation and multi surface cover according to their respective MC weightage. Secondly, to generate an improved actual ETa map by overlaying the segmented MC with a rectified ETo. Images from AVHRR and MODIS satellites were selected in order to generate MC and ET maps. Two powerful MC algorithms were used based on land Surface Temperature (Ts), vegetation Indices (VI) and field measurements of MC; which were conducted at variable depths to examine the depth influence on MC and Ts magnitudes

    Comparison of Recent Remote Sensing Data Using an Artificial Neural Network to Predict Soil Moisture by Focusing on Radiometric Indices

    Get PDF
    Remote sensing data is widely used as a common variable for digital soil mapping estimating models. The aim of this study, quite recently made available to researchers Operational Land Imager 2 (OLI–2) have structure Landsat 9 and Landsat 8 (OLI) and Sentinel 2A (MSI) to compare the performance of soil moisture estimation in multi-layer perceptron network (MLP) artificial intelligence algorithm of image data. The working area is 886.78 km2 and soil sampling was performed at 66 points for gravimetric soil moisture determination. In addition, after the satellite images were pre-processed, Soil Adjusted Vegetation Index (SAVI) and Normalized Difference Moisture Index (NDMI) were calculated. Landsat 9 (OLI-2) based SAVI and NDMI showed a moderately significant positive correlation relationship with gravimetric soil moisture (rSAVI-SM=0.62, rNMDI-SM=0.44). The relationship between Landsat 8 (OLI) (rSAVI-SM=0.57, rNDMI-SM=0.11) and Sentinel 2A (MSI) (rSAVI-SM=0.42, rNDMI-SM=0.27) based radiometric indices and soil moisture was lower than Landsat 9 (OLI-2). RMSE values of MLP models were found to be respectively 0.79, 1.16 and 1.17 for Landsat 9 (OLI-2), Landsat 8 (OLI) and Sentinel 2A (MSI). Our results showed that with an Operational Land Imager (OLI-2) and near and short-wave infrared wavelengths improvements to multispectral imaging have improved soil moisture estimation success
    corecore