160 research outputs found

    On the Investigation of Biological Phenomena through Computational Intelligence

    Get PDF
    This paper is largely devoted for building a novel approach which is able to explain biological phenomena like splicing promoter gene identification disease and disorder identification and to acquire and exploit biological data This paper also presents an overview on the artificial neural network based computational intelligence technique to infer and analyze biological information from wide spectrum of complex problems Bioinformatics and computational intelligence are new research area which integrates many core subjects such as chemistry biology medical science mathematics computer and information science Since most of the problems in bioinformatics are inherently hard ill defined and possesses overlapping boundaries Neural networks have proved to be effective in solving those problems where conventional com-putation tools failed to provide solution Our experiments demonstrate the endeavor of biological phenomena as an effec-tive description for many intelligent applications Having a computational tool to predict genes and other meaningful in-formation is therefore of great value and can save a lot of expensive and time consuming experiments for biologists This paper will focus on issues related to design methodology comprising neural network to analyze biological information and investigate them for powerful application

    EST2Prot: Mapping EST sequences to proteins

    Get PDF
    BACKGROUND: EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked. RESULTS: We describe a system (EST2Prot) that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors. CONCLUSION: EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at

    iSS-PseDNC: Identifying Splicing Sites Using Pseudo Dinucleotide Composition

    Get PDF

    Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    Get PDF
    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net

    Gene regulatory network modelling with evolutionary algorithms -an integrative approach

    Get PDF
    Building models for gene regulation has been an important aim of Systems Biology over the past years, driven by the large amount of gene expression data that has become available. Models represent regulatory interactions between genes and transcription factors and can provide better understanding of biological processes, and means of simulating both natural and perturbed systems (e.g. those associated with disease). Gene regulatory network (GRN) quantitative modelling is still limited, however, due to data issues such as noise and restricted length of time series, typically used for GRN reverse engineering. These issues create an under-determination problem, with many models possibly fitting the data. However, large amounts of other types of biological data and knowledge are available, such as cross-platform measurements, knockout experiments, annotations, binding site affinities for transcription factors and so on. It has been postulated that integration of these can improve model quality obtained, by facilitating further filtering of possible models. However, integration is not straightforward, as the different types of data can provide contradictory information, and are intrinsically noisy, hence large scale integration has not been fully explored, to date. Here, we present an integrative parallel framework for GRN modelling, which employs evolutionary computation and different types of data to enhance model inference. Integration is performed at different levels. (i) An analysis of cross-platform integration of time series microarray data, discussing the effects on the resulting models and exploring crossplatform normalisation techniques, is presented. This shows that time-course data integration is possible, and results in models more robust to noise and parameter perturbation, as well as reduced noise over-fitting. (ii) Other types of measurements and knowledge, such as knock-out experiments, annotated transcription factors, binding site affinities and promoter sequences are integrated within the evolutionary framework to obtain more plausible GRN models. This is performed by customising initialisation, mutation and evaluation of candidate model solutions. The different data types are investigated and both qualitative and quantitative improvements are obtained. Results suggest that caution is needed in order to obtain improved models from combined data, and the case study presented here provides an example of how this can be achieved. Furthermore, (iii), RNA-seq data is studied in comparison to microarray experiments, to identify overlapping features and possibilities of integration within the framework. The extension of the framework to this data type is straightforward and qualitative improvements are obtained when combining predicted interactions from single-channel and RNA-seq datasets

    Data mining using neural networks

    Get PDF
    Data mining is about the search for relationships and global patterns in large databases that are increasing in size. Data mining is beneficial for anyone who has a huge amount of data, for example, customer and business data, transaction, marketing, financial, manufacturing and web data etc. The results of data mining are also referred to as knowledge in the form of rules, regularities and constraints. Rule mining is one of the popular data mining methods since rules provide concise statements of potentially important information that is easily understood by end users and also actionable patterns. At present rule mining has received a good deal of attention and enthusiasm from data mining researchers since rule mining is capable of solving many data mining problems such as classification, association, customer profiling, summarization, segmentation and many others. This thesis makes several contributions by proposing rule mining methods using genetic algorithms and neural networks. The thesis first proposes rule mining methods using a genetic algorithm. These methods are based on an integrated framework but capable of mining three major classes of rules. Moreover, the rule mining processes in these methods are controlled by tuning of two data mining measures such as support and confidence. The thesis shows how to build data mining predictive models using the resultant rules of the proposed methods. Another key contribution of the thesis is the proposal of rule mining methods using supervised neural networks. The thesis mathematically analyses the Widrow-Hoff learning algorithm of a single-layered neural network, which results in a foundation for rule mining algorithms using single-layered neural networks. Three rule mining algorithms using single-layered neural networks are proposed for the three major classes of rules on the basis of the proposed theorems. The thesis also looks at the problem of rule mining where user guidance is absent. The thesis proposes a guided rule mining system to overcome this problem. The thesis extends this work further by comparing the performance of the algorithm used in the proposed guided rule mining system with Apriori data mining algorithm. Finally, the thesis studies the Kohonen self-organization map as an unsupervised neural network for rule mining algorithms. Two approaches are adopted based on the way of self-organization maps applied in rule mining models. In the first approach, self-organization map is used for clustering, which provides class information to the rule mining process. In the second approach, automated rule mining takes the place of trained neurons as it grows in a hierarchical structure
    corecore