6,437 research outputs found

    Intrinsic Isometric Manifold Learning with Application to Localization

    Full text link
    Data living on manifolds commonly appear in many applications. Often this results from an inherently latent low-dimensional system being observed through higher dimensional measurements. We show that under certain conditions, it is possible to construct an intrinsic and isometric data representation, which respects an underlying latent intrinsic geometry. Namely, we view the observed data only as a proxy and learn the structure of a latent unobserved intrinsic manifold, whereas common practice is to learn the manifold of the observed data. For this purpose, we build a new metric and propose a method for its robust estimation by assuming mild statistical priors and by using artificial neural networks as a mechanism for metric regularization and parametrization. We show successful application to unsupervised indoor localization in ad-hoc sensor networks. Specifically, we show that our proposed method facilitates accurate localization of a moving agent from imaging data it collects. Importantly, our method is applied in the same way to two different imaging modalities, thereby demonstrating its intrinsic and modality-invariant capabilities

    Machine Learning in Appearance-based Robot Self-localization

    Full text link
    An appearance-based robot self-localization problem is considered in the machine learning framework. The appearance space is composed of all possible images, which can be captured by a robot's visual system under all robot localizations. Using recent manifold learning and deep learning techniques, we propose a new geometrically motivated solution based on training data consisting of a finite set of images captured in known locations of the robot. The solution includes estimation of the robot localization mapping from the appearance space to the robot localization space, as well as estimation of the inverse mapping for modeling visual image features. The latter allows solving the robot localization problem as the Kalman filtering problem.Comment: 7 pages, 3 figures, ICMLA 2017 conferenc

    Dynamic Topological Mapping with Biobotic Swarms

    Full text link
    In this paper, we present an approach for dynamic exploration and mapping of unknown environments using a swarm of biobotic sensing agents, with a stochastic natural motion model and a leading agent (e.g., an unmanned aerial vehicle). The proposed robust mapping technique constructs a topological map of the environment using only encounter information from the swarm. A sliding window strategy is adopted in conjunction with a topological mapping strategy based on local interactions among the swarm in a coordinate-free fashion to obtain local maps of the environment. These maps are then merged into a global topological map which can be visualized using a graphical representation that integrates geometric as well as topological feature of the environment. Localized robust topological features are extracted using tools from topological data analysis. Simulation results have been presented to illustrate and verify the correctness of our dynamic mapping algorithm

    Semi-Definite Programming Relaxation for Non-Line-of-Sight Localization

    Full text link
    We consider the problem of estimating the locations of a set of points in a k-dimensional euclidean space given a subset of the pairwise distance measurements between the points. We focus on the case when some fraction of these measurements can be arbitrarily corrupted by large additive noise. Given that the problem is highly non-convex, we propose a simple semidefinite programming relaxation that can be efficiently solved using standard algorithms. We define a notion of non-contractibility and show that the relaxation gives the exact point locations when the underlying graph is non-contractible. The performance of the algorithm is evaluated on an experimental data set obtained from a network of 44 nodes in an indoor environment and is shown to be robust to non-line-of-sight errors

    The Manifold Particle Filter for State Estimation on High-dimensional Implicit Manifolds

    Full text link
    We estimate the state a noisy robot arm and underactuated hand using an Implicit Manifold Particle Filter (MPF) informed by touch sensors. As the robot touches the world, its state space collapses to a contact manifold that we represent implicitly using a signed distance field. This allows us to extend the MPF to higher (six or more) dimensional state spaces. Earlier work (which explicitly represents the contact manifold) only shows the MPF in two or three dimensions. Through a series of experiments, we show that the implicit MPF converges faster and is more accurate than a conventional particle filter during periods of persistent contact. We present three methods of sampling the implicit contact manifold, and compare them in experiments.Comment: 10 pages. Conference submission pre-print. Work in progres

    Indoor Localization for IoT Using Adaptive Feature Selection: A Cascaded Machine Learning Approach

    Full text link
    Evolving Internet-of-Things (IoT) applications often require the use of sensor-based indoor tracking and positioning, for which the performance is significantly improved by identifying the type of the surrounding indoor environment. This identification is of high importance since it leads to higher localization accuracy. This paper presents a novel method based on a cascaded two-stage machine learning approach for highly-accurate and robust localization in indoor environments using adaptive selection and combination of RF features. In the proposed method, machine learning is first used to identify the type of the surrounding indoor environment. Then, in the second stage, machine learning is employed to identify the most appropriate selection and combination of RF features that yield the highest localization accuracy. Analysis is based on k-Nearest Neighbor (k-NN) machine learning algorithm applied on a real dataset generated from practical measurements of the RF signal in realistic indoor environments. Received Signal Strength, Channel Transfer Function, and Frequency Coherence Function are the primary RF features being explored and combined. Numerical investigations demonstrate that prediction based on the concatenation of primary RF features enhanced significantly as the localization accuracy improved by at least 50% to more than 70%.Comment: 13 page

    A taxonomy of localization techniques based on multidimensional scaling

    Full text link
    Localization in Wireless Sensor Networks (WSNs) has been a challenging problem in the last decade. The most explored approaches for this purpose are based on multidimensional scaling (MDS) technique. The first algorithm that introduced MDS for nodes localization in sensor networks is well known as MDS-MAP. Since its appearance in 2003, many variations of MDS-MAP have been proposed in the literature. This paper aims to provide a comprehensive survey of the localization techniques that are based on MDS. We classify MDS-based algorithms according to different taxonomy features and different evaluation metrics

    Geometric Learning and Topological Inference with Biobotic Networks: Convergence Analysis

    Full text link
    In this study, we present and analyze a framework for geometric and topological estimation for mapping of unknown environments. We consider agents mimicking motion behaviors of cyborg insects, known as biobots, and exploit coordinate-free local interactions among them to infer geometric and topological information about the environment, under minimal sensing and localization constraints. Local interactions are used to create a graphical representation referred to as the encounter graph. A metric is estimated over the encounter graph of the agents in order to construct a geometric point cloud using manifold learning techniques. Topological data analysis (TDA), in particular persistent homology, is used in order to extract topological features of the space and a classification method is proposed to infer robust features of interest (e.g. existence of obstacles). We examine the asymptotic behavior of the proposed metric in terms of the convergence to the geodesic distances in the underlying manifold of the domain, and provide stability analysis results for the topological persistence. The proposed framework and its convergences and stability analysis are demonstrated through numerical simulations and experiments

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Outlier Detection and Optimal Anchor Placement for 3D Underwater Optical Wireless Sensor Networks Localization

    Full text link
    Location is one of the basic information required for underwater optical wireless sensor networks (UOWSNs) for different purposes such as relating the sensing measurements with precise sensor positions, enabling efficient geographic routing techniques, and sustaining link connectivity between the nodes. Even though various two-dimensional UOWSNs localization methods have been proposed in the past, the directive nature of optical wireless communications and three-dimensional (3D) deployment of sensors require to develop 3D underwater localization methods. Additionally, the localization accuracy of the network strongly depends on the placement of the anchors. Therefore, we propose a robust 3D localization method for partially connected UOWSNs which can accommodate the outliers and optimize the placement of the anchors to improve the localization accuracy. The proposed method formulates the problem of missing pairwise distances and outliers as an optimization problem which is solved through half quadratic minimization. Furthermore, analysis is provided to optimally place the anchors in the network which improves the localization accuracy. The problem of optimal anchor placement is formulated as a combination of Fisher information matrices for the sensor nodes where the condition of D-optimality is satisfied. The numerical results indicate that the proposed method outperforms the literature substantially in the presence of outliers.Comment: 14 pages, 11 figures, Accepted for Publication in IEEE Transactions on Communication
    • …
    corecore