23 research outputs found

    Near-optimal pitch of a moiré grating in dynamic visual cryptography

    Get PDF
    Dynamic visual cryptography (DVC) is a technique for the encryption and decryption of visual secret information. The confidential visual information in DVC is concealed embedding the secret image into the regular moiré grating. The secret can be perceived from the cover image if only the cover image is oscillated according to a predefined law of motion and time-averaging techniques are used. The security of the encryption procedure and the quality of the decrypted image depend on the proper preselection of the pitches of a moiré grating used in the encryption stage. This paper presents the main principles of the determination of near-optimal pair of the pitches of moiré grating as well as graphical schemes and analytical equations in case of harmonic and chaotic oscillations

    Moiré methods for the protection of documents and products: A short survey

    Get PDF
    Moiré effects have long been used for various applications in many different fields, including metrology, strain analysis, optical alignment, etc. In the present survey we describe some of the main applications of the moiré effect in the field of document and product security. We review the main families of moiré-based anticounterfeiting methods, compare them, and explain how they can be used for such security applications

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Currency security and forensics: a survey

    Get PDF
    By its definition, the word currency refers to an agreed medium for exchange, a nation’s currency is the formal medium enforced by the elected governing entity. Throughout history, issuers have faced one common threat: counterfeiting. Despite technological advancements, overcoming counterfeit production remains a distant future. Scientific determination of authenticity requires a deep understanding of the raw materials and manufacturing processes involved. This survey serves as a synthesis of the current literature to understand the technology and the mechanics involved in currency manufacture and security, whilst identifying gaps in the current literature. Ultimately, a robust currency is desire

    Optical image compression and encryption methods

    No full text
    International audienceOver the years extensive studies have been carried out to apply coherent optics methods in real-time communications and image transmission. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. However, the transmitted data can be intercepted by nonauthorized people. This explains why considerable effort is being devoted at the current time to data encryption and secure transmission. In addition, only a small part of the overall information is really useful for many applications. Consequently, applications can tolerate information compression that requires important processing when the transmission bit rate is taken into account. To enable efficient and secure information exchange, it is often necessary to reduce the amount of transmitted information. In this context, much work has been undertaken using the principle of coherent optics filtering for selecting relevant information and encrypting it. Compression and encryption operations are often carried out separately, although they are strongly related and can influence each other. Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage. Finally, the advantages and limitations of a set of optical compression and encryption methods are discussed

    Bridging the Gap Between People, Mobile Devices, and the Physical World

    Get PDF
    Human-computer interaction (HCI) is being revolutionized by computational design and artificial intelligence. As the diversity of user interfaces shifts from personal desktops to mobile and wearable devices, yesterday’s tools and interfaces are insufficient to meet the demands of tomorrow’s devices. This dissertation describes my research on leveraging different physical channels (e.g., vibration, light, capacitance) to enable novel interaction opportunities. We first introduce FontCode, an information embedding technique for text documents. Given a text document with specific fonts, our method can embed user-specified information (e.g., URLs, meta data, etc) in the text by perturbing the glyphs of text characters while preserving the text content. The embedded information can later be retrieved using a smartphone in real time. Then, we present Vidgets, a family of mechanical widgets, specifically push buttons and rotary knobs that augment mobile devices with tangible user interfaces. When these widgets are attached to a mobile device and a user interacts with them, the nonlinear mechanical response of the widgets shifts the device slightly and quickly. Subsequently, this subtle motion can be detected by the Inertial Measurement Units (IMUs), which is commonly installed on mobile devices. Next, we propose BackTrack, a trackpad placed on the back of a smartphone to track finegrained finger motions. Our system has a small form factor, with all the circuits encapsulated in a thin layer attached to a phone case. It can be used with any off-the-shelf smartphone, requiring no power supply or modification of the operating systems. BackTrack simply extends the finger tracking area of the front screen, without interrupting the use of the front screen. Lastly, we demonstrate MoiréBoard, a new camera tracking method that leverages a seemingly irrelevant visual phenomenon, the moiré effect. Based on a systematic analysis of the moiré effect under camera projection, MoiréBoard requires no power nor camera calibration. It can easily be made at a low cost (e.g., through 3D printing) and ready to use with any stock mobile device with a camera. Its tracking algorithm is computationally efficient and can run at a high frame rate. It is not only simple to implement, but also tracks devices at a high accuracy, comparable to the state-of-the-art commercial VR tracking systems

    Uniquely Identifiable Tamper-Evident Device Using Coupling between Subwavelength Gratings

    Get PDF
    Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident. Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 µm to allow discernible higher transmission orders, and a HWHM of 28 µm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moiré fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating. The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was fixed to a translation mount that transmitted the light source through the optical fiber, and the output intensity was measured using a silicon photodiode. The evanescent wave coupling output results for the CSWGs were measured and compared to the simulation results

    Geometric optical metasurface for polarization control

    Get PDF
    Like amplitude and phase, polarization is one of the fundamental properties of light. Controlling polarization in a desirable manner is fundamental to science and technology. However, practical applications based on polarization manipulation are mainly hindered by the complexity of experimental system, bulky size and poor spatial resolution. In recent years, metasurfaces have drawn considerable attention in the scientific community due to their exotic electromagnetic properties and potential breakthrough for light manipulation. With the development of nanophotonics, the generation of arbitrary spatially-varying polarization from an input beam is achievable. The objective of this thesis is to develop metasurface approaches to control phase and polarization of light in subwavelength scale for novel applications, such as polarization-controlled hologram generation and structured beam generation. The emphasis of the thesis is placed on the polarization control using geometric plasmonic metasurfaces. We start by reviewing recent progress regarding novel planar optical components. After the introduction of mechanism of light-nanostructure interaction and the far-field scattering of metal nanostructure arrays based on Mie theory, we discuss the abrupt phase change emerging from rotated nanostrips and the generalized Snell’s law. To demonstrate the precise phase manipulation, we develop a metasurface approach for polarization-controlled hologram generation. Moreover, we propose and experimentally demonstrate a novel method to realise the superposition of orbital angular momentum states in multiple channels using a single device. Spring from the superposition of two opposite circular polarizations, two different approaches for polarization manipulation at nanoscale are developed and experimentally verified. Based on the first approach, a vector vortex beam with inhomogeneous polarization and phase distributions is demonstrated, which features the spin-rotation coupling and the superposition of two orthogonal circular components, i.e., the converted part with an additional phase pickup and the residual part without a phase change. The second approach is to control the phase of the two orthogonal circular components simultaneously to engineer the polarization profile. Furthermore, we adopt this approach to develop a compact metasurface device which can hide a high-resolution grayscale image in a laser beam. The compactness of metasurface approach in polarization manipulation renders this technology very attractive for diverse applications such as encryption, imaging, optical communications, quantum science, and fundamental physics

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique
    corecore