916 research outputs found

    Adaptação automática de algoritmos de otimização metaheurística

    Get PDF
    A maioria dos problemas do mundo real tem uma multiplicidade de possíveis soluções. Além disso, usualmente, são encontradas limitações de recursos e tempo na resolução de problemas reais complexos e, por isso, frequentemente, não é possível aplicar um método determinístico na resolução desses problemas. Por este motivo, as meta-heurísticas têm ganho uma relevância significativa sobre os métodos determinísticos na resolução de problemas de otimização com múltiplas combinações. Ainda que as abordagens meta-heurísticas sejam agnósticas ao problema, os resultados da otimização são fortemente influenciados pelos parâmetros que estas meta-heurísticos necessitam para a sua configuração. Por sua vez, as melhores parametrizações são fortemente influenciadas pela meta-heurística e pela função objetivo. Por este motivo, a cada novo desenvolvimento é necessária uma otimização dos parâmetros das metas heurísticas praticamente partindo do zero. Assim, e, atendendo ao aumento da complexidade das meta-heurísticas e dos problemas aos quais estassão normalmente aplicadas, tem-se vindo a observar um crescente interesse no problema da configuração ótima destes algoritmos. Neste projeto é apresentada uma nova abordagem de otimização automática dos parâmetros de algoritmos meta-heurísticos. Esta abordagem não consiste numa pré-seleção estática de um único conjunto de parâmetros que será utilizado ao longo da pesquisa, como é a abordagem comum, mas sim na criação de um processo dinâmico, em que a parametrização é alterada ao longo da otimização. Esta solução consiste na divisão do processo de otimização em três etapas, forçando, numa primeira etapa um nível alto de exploração do espaço de procura, seguida de uma exploração intermédia e, na última etapa, privilegiando a pesquisa local focada nos pontos de maior potencial. De forma a permitir uma solução eficiente e eficaz, foram desenvolvidos dois módulos um Módulo de Treino e um Módulo de Otimização. No Módulo de Treino, o processo de fine-tuning é automatizado e, consequentemente, o processo de integração de uma nova meta-heurística ou uma nova função objetivo é facilitado. No Módulo de Otimização é usado um sistema multiagente para a otimização de uma dada função seguindo a abordagem de pesquisa proposta. Com base nos resultados obtidos através da aplicação de otimização por enxame de partículas e algoritmos genéticos a várias funções benchmark e a um problema real na área dos sistemas de energia, o Módulo de Treino permitiu automatizar o processo de fine-tuning e, consequentemente, facilitar o processo de introdução no sistema de uma nova meta-heurística ou de uma nova função relativa a um novo problema a resolver. Utilizando a abordagem de otimização proposta através do Módulo de Otimização, obtém-se uma maior generalização e os resultados são melhorados sem comprometer o tempo máximo para a otimização.Most real-word problems have a large solution space. Due to resource and time constraints, it is often not possible to apply a deterministic method to solve such problems. For this reason, metaheuristic optimization algorithm has earned increased popularity over the deterministic methods in solving complex combination optimization problems. However, despite being problem-agnostic techniques, metaheuristic’s optimization results are highly impacted by the defined parameters. The best parameterizations are highly impacted by the metaheuristic version and by the addressed objective function. For this reason, with each new development it is necessary to optimize the metaheuristic parameters practically from scratch. Thus, and given the increasing complexity of metaheuristics and the problems to which they are normally applied, there has been a growing interest in the problem of optimal configuration of these algorithms. In this work, a new approach for automatic optimization of metaheuristic algorithms parameters is presented. This approach does not consist in a static pre-selection of a single set of parameters that will be used throughout the search process, as is the common approach, but in the creation of a dynamic process, in which the parameterization is changed during the optimization. This solution consists of dividing the optimization process into three stages, forcing, in a first stage, a high level of exploration of the search space, followed by an intermediate exploration and, in the last stage, fostering local search focused on the points of greatest potential. In order to allow an efficient and effective solution, two modules are developed, a Training Module and an Optimization Module. In the Training Module, the finetuning process is automated and, consequently, the process of integrating a new metaheuristic or a new objective function is facilitated. In the Optimization Module, a multi-agent system is used to optimize a given function following the proposed research approach. Based on the results obtained using particle swarm optimization and genetic algorithms to solve several benchmark functions and a real problem in the area of power and energy systems, the Training Module made it possible to automate the fine-tuning process and, consequently, facilitate the process of introducing in the system a new metaheuristic or a new function related to a new problem to be solved. Using the proposed optimization approach through the Optimization Module, a greater generalization is obtained, and the results are improved without compromising the maximum time for the optimization

    A Comprehensive Review of Recent Variants and Modifications of Firefly Algorithm

    Get PDF
    Swarm intelligence (SI) is an emerging field of biologically-inspired artificial intelligence based on the behavioral models of social insects such as ants, bees, wasps, termites etc. Swarm intelligence is the discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. In the last two decades, there has been a growing interest of addressing Dynamic Optimization Problems using SI algorithms due to their adaptation capabilities. This paper presents a broad review on two SI algorithms: 1) Firefly Algorithm (FA) 2) Flower Pollination Algorithm (FPA). FA is inspired from bioluminescence characteristic of fireflies. FPA is inspired from the the pollination behavior of flowering plants. This article aims to give a detailed analysis of different variants of FA and FPA developed by parameter adaptations, modification, hybridization as on date. This paper also addresses the applications of these algorithms in various fields. In addition, literatures found that most of the cases that used FA and FPA technique have outperformed compare to other metaheuristic algorithms

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    corecore