23,592 research outputs found

    Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints

    Full text link
    For a given graph GG with positive integral cost and delay on edges, distinct vertices ss and tt, cost bound CZ+C\in Z^{+} and delay bound DZ+D\in Z^{+}, the kk bi-constraint path (kkBCP) problem is to compute kk disjoint stst-paths subject to CC and DD. This problem is known NP-hard, even when k=1k=1 \cite{garey1979computers}. This paper first gives a simple approximation algorithm with factor-(2,2)(2,2), i.e. the algorithm computes a solution with delay and cost bounded by 2D2*D and 2C2*C respectively. Later, a novel improved approximation algorithm with ratio (1+β,max{2,1+ln1β})(1+\beta,\,\max\{2,\,1+\ln\frac{1}{\beta}\}) is developed by constructing interesting auxiliary graphs and employing the cycle cancellation method. As a consequence, we can obtain a factor-(1.369,2)(1.369,\,2) approximation algorithm by setting 1+ln1β=21+\ln\frac{1}{\beta}=2 and a factor-(1.567,1.567)(1.567,\,1.567) algorithm by setting 1+β=1+ln1β1+\beta=1+\ln\frac{1}{\beta}. Besides, by setting β=0\beta=0, an approximation algorithm with ratio (1,O(lnn))(1,\, O(\ln n)), i.e. an algorithm with only a single factor ratio O(lnn)O(\ln n) on cost, can be immediately obtained. To the best of our knowledge, this is the first non-trivial approximation algorithm for the kkBCP problem that strictly obeys the delay constraint.Comment: 12 page

    Claw-free t-perfect graphs can be recognised in polynomial time

    Full text link
    A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect

    Approximating Directed Steiner Problems via Tree Embedding

    Get PDF
    In the k-edge connected directed Steiner tree (k-DST) problem, we are given a directed graph G on n vertices with edge-costs, a root vertex r, a set of h terminals T and an integer k. The goal is to find a min-cost subgraph H of G that connects r to each terminal t by k edge-disjoint r,t-paths. This problem includes as special cases the well-known directed Steiner tree (DST) problem (the case k = 1) and the group Steiner tree (GST) problem. Despite having been studied and mentioned many times in literature, e.g., by Feldman et al. [SODA'09, JCSS'12], by Cheriyan et al. [SODA'12, TALG'14] and by Laekhanukit [SODA'14], there was no known non-trivial approximation algorithm for k-DST for k >= 2 even in the special case that an input graph is directed acyclic and has a constant number of layers. If an input graph is not acyclic, the complexity status of k-DST is not known even for a very strict special case that k= 2 and |T| = 2. In this paper, we make a progress toward developing a non-trivial approximation algorithm for k-DST. We present an O(D k^{D-1} log n)-approximation algorithm for k-DST on directed acyclic graphs (DAGs) with D layers, which can be extended to a special case of k-DST on "general graphs" when an instance has a D-shallow optimal solution, i.e., there exist k edge-disjoint r,t-paths, each of length at most D, for every terminal t. For the case k= 1 (DST), our algorithm yields an approximation ratio of O(D log h), thus implying an O(log^3 h)-approximation algorithm for DST that runs in quasi-polynomial-time (due to the height-reduction of Zelikovsky [Algorithmica'97]). Consequently, as our algorithm works for general graphs, we obtain an O(D k^{D-1} log n)-approximation algorithm for a D-shallow instance of the k-edge-connected directed Steiner subgraph problem, where we wish to connect every pair of terminals by k-edge-disjoint paths
    corecore