34,634 research outputs found

    SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms

    Full text link
    We propose a group-theoretical approach to the generalized oscillator algebra Ak recently investigated in J. Phys. A: Math. Theor. 43 (2010) 115303. The case k > or 0 corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the Poeschl-Teller systems) while the case k < 0 is described by the compact group SU(2) (as for the Morse system). We construct the phase operators and the corresponding temporally stable phase eigenstates for Ak in this group-theoretical context. The SU(2) case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices

    The Fourier U(2) Group and Separation of Discrete Variables

    Full text link
    The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R)Sp(4,R), whose maximal compact subgroup is the Fourier group U(2)FU(2)_F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4)so(4). Two distinct subalgebra chains are used to model arrays of N2N^2 points placed along Cartesian or polar (radius and angle) coordinates, thus realizing one case of separation in two discrete coordinates. The N2N^2-vectors in this space are digital (pixellated) images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible
    • …
    corecore