65 research outputs found

    Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways

    Get PDF
    The problem addressed in this dissertation is the Aircraft Sequencing Problem (ASP) in which a schedule must be developed to determine the assignment of each aircraft to a runway, the appropriate sequence of aircraft on each runway, and their departing or landing times. The dissertation examines the ASP over multiple runways, under mixed mode operations with the objective of minimizing the total weighted tardiness of aircraft landings and departures simultaneously. To prevent the dangers associated with wake-vortex effects, separation times enforced by Aviation Administrations (e.g., FAA) are considered, adding another level of complexity given that such times are sequence-dependent. Due to the problem being NP-hard, it is computationally difficult to solve large scale instances in a reasonable amount of time. Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are introduced to improve solutions initially constructed by the proposed greedy algorithms. The performance (solution quality and computational time) of the various algorithms is compared to the optimal solutions and to each other. The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) as air traffic systems frequently encounter various disruptions due to unexpected events such as inclement weather, aircraft failures or personnel shortages rendering the initial plan suboptimal or even obsolete in some cases. This research considers disruptions including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is formulated as a multi-objective optimization problem in which both the schedule\u27s quality and stability are of interest. The objectives consist of the total weighted start times (solution quality), total weighted start time deviation, and total weighted runway deviation (instability measures). Repair and complete regeneration approximate algorithms are developed for each type of disruptive events. The algorithms are tested against difficult benchmark problems and the solutions are compared to optimal solutions in terms of solution quality, schedule stability and computational time

    An improved MOEA/D algorithm for multi-objective multicast routing with network coding

    Get PDF
    Network coding enables higher network throughput, more balanced traffic, and securer data transmission. However, complicated mathematical operations incur when packets are combined at intermediate nodes, which, if not operated properly, lead to very high network resource consumption and unacceptable delay. Therefore, it is of vital importance to minimize various network resources and end-to-end delays while exploiting promising benefits of network coding. Multicast has been used in increasingly more applications, such as video conferencing and remote education. In this paper the multicast routing problem with network coding is formulated as a multi-objective optimization problem (MOP), where the total coding cost, the total link cost and the end-to-end delay are minimized simultaneously. We adapt the multi-objective evolutionary algorithm based on decomposition (MOEA/D) for this MOP by hybridizing it with a population-based incremental learning technique which makes use of the global and historical information collected to provide additional guidance to the evolutionary search. Three new schemes are devised to facilitate the performance improvement, including a probability-based initialization scheme, a problem-specific population updating rule, and a hybridized reproduction operator. Experimental results clearly demonstrate that the proposed algorithm outperforms a number of state-of-the-art MOEAs regarding the solution quality and computational time

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Optimización de problemas de varios objetivos desde un enfoque de eficiencia energética aplicado a redes celulares heterogéneas 5G usando un marco de conmutación de celdas pequeñas

    Get PDF
    This Ph.D. dissertation addresses the Many-Objective Optimization Problem (MaOP) study to reduce the inter-cell interference and the power consumption for realistic Centralized, Collaborative, Cloud, and Clean Radio Access Networks (C-RANs). It uses the Cell Switch-Off (CSO) scheme to switch-off/on Remote Radio Units (RRUs) and the Coordinated Scheduling (CS) technique to allocate resource blocks smartly. The EF1-NSGA-III (It is a variation of the NSGA-III algorithm that uses the front 1 to find extreme points at the normalization procedure extended in this thesis) algorithm is employed to solve a proposed Many-Objective Optimization Problem (MaOP). It is composed of four objective functions, four constraints, and two decision variables. However, the above problem is redefined to have three objective functions to see the performance comparison between the NSGA-II and EF1-NSGA-III algorithms. The OpenAirInterface (OAI) platform is used to evaluate and validate the performance of an indoor coverage system because most of the user-end equipment of next-generation cellular networks will be in an indoor environment. It constitutes the fastest growing 5G open-source platform that implements 3GPP technology on general-purpose computers, fast Ethernet transport ports, and Commercial-Off-The-Shelf (COTS) software-defined radio hardware. This document is composed of five contributions. The first one is a survey about testbed, emulators, and simulators for 4G/5G cellular networks. The second one is the extension of the KanGAL's NSGA-II code to implement the EF1-NSGA-III, adaptive EF1-NSGA-III (A-EF1-NSGA-III), and efficient adaptive EF1-NSGA-III (A2^2-EF1-NSGA-III). They support up to 10 objective functions, manage real, integer, and binary decision variables, and many constraints. The above algorithms outperform other works in terms of the Inverted Generational Distance (IGD) metric. The third contribution is the implementation of real-time emulation methodologies for C-RANs using a frequency domain representation in OAI. It improves the average computation time 10-fold compared to the time domain without using Radio Frequency hardware and avoids their uncertainties. The fourth one is the implementation of the Coordination Scheduling (CS) technique as a proof-of-concept to validate the advantages of frequency domain methodologies and to allocate resource blocks dynamically among RRUs. Finally, a many-objective optimization problem is defined and solved with evolutionary algorithms where diversity is managed based on crowded-distance and reference points to reduce the power consumption for C-RANs. The solutions obtained are considered to control the scheduling task at the Radio Cloud Center (RCC) and to switch RRUs.Este disertación aborda el estudio del problema de optimización de varios objetivos (MaOP) para reducir la interferencia entre células y el consumo de energía para redes de acceso de radio en tiempo real, colaborativas, en la nube y limpias (C-RAN). Utiliza el esquema de conmutacion de celdas (CSO) para apagar / encender unidades de radio remotas (RRU) y la técnica de programación coordinada (CS) para asignar bloques de recursos de manera inteligente. El algoritmo EF1-NSGA-III (es una variación del algoritmo NSGA-III que usa el primer frente de pareto para encontrar puntos extremos en el procedimiento de normalización extendido en esta tesis) se utiliza para resolver un problema de optimización de varios objetivos (MaOP) propuesto. Se compone de cuatro funciones objetivos, cuatro restricciones y dos variables de decisión. Sin embargo, el problema anterior se redefine para tener tres funciones objetivas para ver la comparación de rendimiento entre los algoritmos NSGA-II y EF1-NSGA-III. La plataforma OpenAirInterface (OAI) se utiliza para evaluar y validar el rendimiento de un sistema de cobertura en interiores porque la mayoría del equipos móviles de las redes celulares de próxima generación estarán en un entorno interior. Ella constituye la plataforma de código abierto 5G de más rápido crecimiento que implementa la tecnología 3GPP en computadoras de uso general, puertos de transporte Ethernet rápidos y hardware de radio definido por software comercial (COTS). Este documento se compone de cinco contribuciones. La primera es una estudio sobre banco de pruebas, emuladores y simuladores para redes celulares 4G / 5G. El segundo es la extensión del código NSGA-II de KanGAL para implementar EF1-NSGA-III, EF1-NSGA-III adaptativo (A-EF1-NSGA-III) y EF1-NSGA-III adaptativo eficiente (A 2 ^ 2 -EF1-NSGA-III). Admiten hasta 10 funciones objetivas, gestionan variables de decisión reales, enteras y binarias, y muchas restricciones. Los algoritmos anteriores superan a otros trabajos en términos de la métrica de distancia generacional invertida (IGD). La tercera contribución es la implementación de metodologías de emulación en tiempo real para C-RAN utilizando una representación de dominio de frecuencia en OAI. Mejora el tiempo de cálculo promedio 10 veces en comparación con el dominio del tiempo sin usar hardware de radiofrecuencia y evita sus incertidumbres. El cuarto es la implementación de la técnica de Programación de Coordinación (CS) como prueba de concepto para validar las ventajas de las metodologías de dominio de frecuencia y asignar bloques de recursos dinámicamente entre las RRU. Finalmente, un problema de optimización de muchos objetivos se define y resuelve con algoritmos evolutivos en los que la diversidad se gestiona en función de la distancia de crouding y los puntos de referencia para reducir el consumo de energía de las C-RAN. Las soluciones obtenidas controlan la tarea de programación en Radio Cloud Center (RCC) y conmutan las RRU.Proyecto personal: Redes celulares de próxima generaciónDoctorad

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    The dynamic vehicle routing problem: a metaheuristics based investigation

    Get PDF
    The desire to optimise problems is as prevalent in today's society as it has ever been. The demand for increases in speed and efficiency is relentless and has resulted in the need for mathematical models to bear greater resemblance to real-life situations. This focus on increased realism has paved the way for new dynamic variants to classic optimisation problems. This thesis begins by considering the Dynamic Vehicle Routing Problem. The basic premise of this routing problem is as follows a percentage of customers are known a priori, for which routes are constructed, further customers then arrive during the course of the working day and need to be incorporated into an evolving schedule. Literature has proposed a timeslot approach, whereby one partitions the working day into a series of smaller problems, that one is then required to solve in succession. This technique is used to produce a variety of metaheuristics based implementations, most noticeably Ant Colony Optimisation and Tabu Search. Consideration is then given to the Dynamic Vehicle Routing Problem with Time Windows. This problem is similar to the Dynamic Vehicle Routing Problem, but requires each customer to be serviced within a predefined period of the day. A metaheuristic approach adapted from the most successful algorithm implemented on the Dynamic Vehicle Routing Problem is presented. Finally consideration is given to a time-based decomposition technique for the Vehicle Routing Problems with Time Windows (Large-Scale instances). This work makes use of the dynamic solution technique developed in the preceding work, and is used in conjunction with an Ant Colony Optimisation algorithm and a descent algorithm

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries

    On Development of Some Soft Computing Based Multiuser Detection Techniques for SDMA–OFDM Wireless Communication System

    Get PDF
    Space Division Multiple Access(SDMA) based technique as a subclass of Multiple Input Multiple Output (MIMO) systems achieves high spectral efficiency through bandwidth reuse by multiple users. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) mitigates the impairments of the propagation channel. The combination of SDMA and OFDM has emerged as a most competitive technology for future wireless communication system. In the SDMA uplink, multiple users communicate simultaneously with a multiple antenna Base Station (BS) sharing the same frequency band by exploring their unique user specific-special spatial signature. Different Multiuser Detection (MUD) schemes have been proposed at the BS receiver to identify users correctly by mitigating the multiuser interference. However, most of the classical MUDs fail to separate the users signals in the over load scenario, where the number of users exceed the number of receiving antennas. On the other hand, due to exhaustive search mechanism, the optimal Maximum Likelihood (ML) detector is limited by high computational complexity, which increases exponentially with increasing number of simultaneous users. Hence, cost function minimization based Minimum Error Rate (MER) detectors are preferred, which basically minimize the probability of error by iteratively updating receiver’s weights using adaptive algorithms such as Steepest Descent (SD), Conjugate Gradient (CG) etc. The first part of research proposes Optimization Techniques (OTs) aided MER detectors to overcome the shortfalls of the CG based MER detectors. Popular metaheuristic search algorithms like Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution Algorithm (ADEA) and Invasive Weed Optimization (IWO), which rely on an intelligent search of a large but finite solution space using statistical methods, have been applied for finding the optimal weight vectors for MER MUD. Further, it is observed in an overload SDMA–OFDM system that the channel output phasor constellation often becomes linearly non-separable. With increasing the number of users, the receiver weight optimization task turns out to be more difficult due to the exponentially increased number of dimensions of the weight matrix. As a result, MUD becomes a challenging multidimensional optimization problem. Therefore, signal classification requires a nonlinear solution. Considering this, the second part of research work suggests Artificial Neural Network (ANN) based MUDs on thestandard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks fo
    corecore