64,730 research outputs found

    Two classes of passive time-varying well-posed linear systems

    Get PDF

    Passivity-preserving parameterized model order reduction using singular values and matrix interpolation

    Get PDF
    We present a parameterized model order reduction method based on singular values and matrix interpolation. First, a fast technique using grammians is utilized to estimate the reduced order, and then common projection matrices are used to build parameterized reduced order models (ROMs). The design space is divided into cells, and a Krylov subspace is computed for each cell vertex model. The truncation of the singular values of the merged Krylov subspaces from the models located at the vertices of each cell yields a common projection matrix per design space cell. Finally, the reduced system matrices are interpolated using positive interpolation schemes to obtain a guaranteed passive parameterized ROM. Pertinent numerical results validate the proposed technique

    Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems

    Full text link
    We study the non-autonomous version of an infinite-dimensional port-Hamiltonian system on an interval [a,b][a, b]. Employing abstract results on evolution families, we show C1C^1-well-posedness of the corresponding Cauchy problem, and thereby existence and uniqueness of classical solutions for sufficiently regular initial data. Further, we demonstrate that a dissipation condition in the style of the dissipation condition sufficient for uniform exponential stability in the autonomous case also leads to a uniform exponential decay of the energy in this non-autonomous setting

    Exponential Convergence Bounds using Integral Quadratic Constraints

    Full text link
    The theory of integral quadratic constraints (IQCs) allows verification of stability and gain-bound properties of systems containing nonlinear or uncertain elements. Gain bounds often imply exponential stability, but it can be challenging to compute useful numerical bounds on the exponential decay rate. In this work, we present a modification of the classical IQC results of Megretski and Rantzer that leads to a tractable computational procedure for finding exponential rate certificates
    corecore