998 research outputs found

    Repairable Replication-based Storage Systems Using Resolvable Designs

    Get PDF
    We consider the design of regenerating codes for distributed storage systems at the minimum bandwidth regeneration (MBR) point. The codes allow for a repair process that is exact and uncoded, but table-based. These codes were introduced in prior work and consist of an outer MDS code followed by an inner fractional repetition (FR) code where copies of the coded symbols are placed on the storage nodes. The main challenge in this domain is the design of the inner FR code. In our work, we consider generalizations of FR codes, by establishing their connection with a family of combinatorial structures known as resolvable designs. Our constructions based on affine geometries, Hadamard designs and mutually orthogonal Latin squares allow the design of systems where a new node can be exactly regenerated by downloading β≥1\beta \geq 1 packets from a subset of the surviving nodes (prior work only considered the case of β=1\beta = 1). Our techniques allow the design of systems over a large range of parameters. Specifically, the repetition degree of a symbol, which dictates the resilience of the system can be varied over a large range in a simple manner. Moreover, the actual table needed for the repair can also be implemented in a rather straightforward way. Furthermore, we answer an open question posed in prior work by demonstrating the existence of codes with parameters that are not covered by Steiner systems

    PL-MODT and PL-MODMC : two codes for reliability and availability analysis of complex technical systems using the fault tree modularization technique

    Get PDF
    "November 1978."Includes bibliographical referencesThe methodology used in the PL-MOD code has been extended to include the time-dependent behavior of the fault tree components. Four classes of components are defined to model time-dependent fault tree leaves. Mathematical simplifications are applied to predict the time-dependent behavior of simple modules in the fault tree from its input components' failure data. The extended code, PL-MODT, handles time-dependent problems based on the mathematical models that have been established. An automatic tree reduction feature is also incorporated into this code. This reduction is based on the Vesely-Fussell importance measure that the code calculates. A CUT-OFF value is defined and incorporated into the code. Any module or component in the fault tree whose V-F importance is less than this value will automatically be eliminated from the tree. In order to benchmark the PL-MODT code, a number of systems are analyzed. The results are in good agreement with other codes, such as FRANTIC and KITT. The computation times are comparable and in most of the cases are even lower for the PL-MODT code compared to the others. In addition, a Monte-Carlo simulation code (PL-MODMC) is developed to propagate uncertainties in the failure rates of the components to the top event of a fault tree. An efficient sorting routine similar to the one used in the LIMITS code is employed in the PL-MODMC code. Upon modularization the code proceeds and propagates uncertainties in the failure rates through the tree. Large fault trees such as the LPRS fault tree as well as some smaller ones have been analyzed for simulation, and the results for the LPRS are in fair agreement with the WASH-1400 predictions for the number of simulations performed. The codes PL-MODT and PL-MODMC are written in PL/l language which offers the extensive use of the list processing tools. First experience indicates that these codes are very efficient and accurate, specifically for the analysis of very large and complex fault treesSponsored by the NR

    Nuclear plant reliability analysis : optimization of test intervals for standby purposes in nuclear power plants

    Get PDF
    "Final report for research project sponsored by Northeast Utilities Service Company, Public Service Electric and Gas Company, Yankee Atomic Electric Company under the M.I.T. Energy Laboratory Electric Utility Program.
    • …
    corecore