5 research outputs found

    Recursive subdivision algorithms for curve and surface design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis, the author studies recursIve subdivision algorithms for curves and surfaces. Several subdivision algorithms are constructed and investigated. Some graphic examples are also presented. Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, some non-uniform schemes, the non-uniform corner cutting scheme and the recursive subdivision algorithm for non-uniform B-spline curves, are constructed and analysed. The adapted parametrization is introduced to analyse these non-uniform algorithms. In order to solve the surface interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme is generalized to surfaces and the 10-point interpolatory subdivision scheme for surfaces is formulated. The so-called Butterfly Scheme, which was firstly introduced by Dyn, Gregory Levin in 1988, is just a special case of the scheme. By studying the Cross-Differences of Directional Divided Differences, a matrix approach for analysing uniform subdivision algorithms for surfaces is established and the convergence of the 10-point scheme over both uniform and non-uniform triangular networks is studied. Another algorithm, the subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary topology is introduced and investigated. This algorithm is a generalization of Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic B-spline patches over uniform data. By studying the local subdivision matrix, which is a circulant, the tangent plane and curvature properties of the limit surfaces at the so-called Extraordinary Points are studied in detail.The Chinese Educational Commission and The British Council (SBFSS/1987

    Blending techniques in Curve and Surface constructions

    Get PDF
    Source at https://www.geofo.no/geofoN.html. <p

    Real root isolation for exact and approximate polynomials using descartes' rule of signs

    Get PDF
    Collins und Akritas (1976) have described the Descartes method for isolating the real roots of an integer polynomial in one variable. This method recursively subdivides an initial interval until Descartes' Rule of Signs indicates that all roots have been isolated. The partial converse of Descartes' Rule by Obreshkoff (1952) in conjunction with the bound of Mahler (1964) and Davenport (1985) leads us to an asymptotically almost tight bound for the resulting subdivision tree. It implies directly the best known complexity bounds for the equivalent forms of the Descartes method in the power basis (Collins/Akritas, 1976), the Bernstein basis (Lane/Riesenfeld, 1981) and the scaled Bernstein basis (Johnson, 1991), which are presented here in a unified fashion. Without losing correctness of the output, we modify the Descartes method such that it can handle bitstream coefficients, which can be approximated arbitrarily well but cannot be determined exactly. We analyze the computing time and precision requirements. The method described elsewhere by the author together with Kerber/Wolpert (2007) and Kerber (2008) to determine the arrangement of plane algebraic curves rests in an essential way on variants of the bitstream Descartes algorithm; we analyze a central part of it.Collins und Akritas (1976) haben das Descartes-Verfahren zur Einschließung der reellen Nullstellen eines ganzzahligen Polynoms in einer Veränderlichen angegeben. Das Verfahren unterteilt rekursiv ein Ausgangsintervall, bis die Descartes'sche Vorzeichenregel anzeigt, dass alle Nullstellen getrennt worden sind. Die partielle Umkehrung der Descartes'schen Regel nach Obreschkoff (1952) in Verbindung mit der Schranke von Mahler (1964) und Davenport (1985) führt uns auf eine asymptotisch fast scharfe Schranke für den sich ergebenden Unterteilungsbaum. Daraus folgen direkt die besten bekannten Komplexitätsschranken für die äquivalenten Formen des Descartes-Verfahrens in der Monom-Basis (Collins/Akritas, 1976), der Bernstein-Basis (Lane/Riesenfeld, 1981) und der skalierten Bernstein-Basis (Johnson, 1991), die hier vereinheitlicht dargestellt werden. Ohne dass die Korrektheit der Ausgabe verloren geht, modifizieren wir das Descartes-Verfahren so, dass es mit "Bitstream"-Koeffizienten umgehen kann, die beliebig genau angenähert, aber nicht exakt bestimmt werden können. Wir analysieren die erforderliche Rechenzeit und Präzision. Das vom Verfasser mit Kerber/Wolpert (2007) und Kerber (2008) an anderer Stelle beschriebene Verfahren zur Bestimmung des Arrangements (der Schnittfigur) ebener algebraischer Kurven fußt wesentlich auf Varianten des Bitstream-Descartes-Verfahrens; wir analysieren einen zentralen Teil davon

    Functional representation and manipulation of shapes with applications in surface and solid modeling

    Get PDF
    Real-valued functions have wide applications in various areas within computer graphics. In this work, we examine three representation of shapes using functions. In particular, we study the classical B-spline representation of piece-wise polynomials in the univariate domain. We provide a generalization of B-spline to the bivariate domain using intuition gained from the univariate construction. We also study the popular scheme of representing 3D density distribution using a uniform, rectilinear grid, where we provide a novel contouring scheme that culls occluded inner geometries. Lastly, we examine a ray-based representation for 3D indicator functions called ray-rep, for which we present a novel meshing scheme with multi-material extensions

    Control of Curvature Extrema in Curve Modeling

    Get PDF
    We present a method for constructing almost-everywhere curvature-continuous curves that interpolate a list of control points and have local maxima of curvature only at the control points. Our premise is that salient features of the curve should occur only at control points to avoid the creation of features unintended by the artist. While many artists prefer to use interpolated control points, the creation of artifacts, such as loops and cusps, away from control points has limited the use of these types of curves. By enforcing the maximum curvature property, loops and cusps cannot be created unless the artist intends to create such features. To create these curves, we analyze the curvature monotonicity of quadratic, rational quadratic and cubic curves and develop a framework to connect such curve primitives with curvature continuity. We formulate an energy to encode the desired properties in a boxed constrained optimization and provide a fast method of estimating the solution through a numerical optimization. The optimized curve can serve as a real-time curve modeling tool in art design applications
    corecore