1,449 research outputs found

    Two approaches for synthesizing scalable residential energy consumption data

    Full text link
    © 2019 Elsevier B.V. Many fields require scalable and detailed energy consumption data for different study purposes. However, due to privacy issues, it is often difficult to obtain sufficiently large datasets. This paper proposes two different methods for synthesizing fine-grained energy consumption data for residential households, namely a regression-based method and a probability-based method. They each use a supervised machine learning method, which trains models with a relatively small real-world dataset and then generates large-scale time series based on the models. This paper describes the two methods in details, including data generation process, optimization techniques, and parallel data generation. This paper evaluates the performance of the two methods, which compare the resulting consumption profiles with real-world data, including patterns, statistics, and parallel data generation in the cluster. The results demonstrate the effectiveness of the proposed methods and their efficiency in generating large-scale datasets

    Overlay networks for smart grids

    Get PDF

    DR-Advisor: A Data-Driven Demand Response Recommender System

    Get PDF
    Demand response (DR) is becoming increasingly important as the volatility on the grid continues to increase. Current DR ap- proaches are predominantly completely manual and rule-based or involve deriving first principles based models which are ex- tremely cost and time prohibitive to build. We consider the problem of data-driven end-user DR for large buildings which involves predicting the demand response baseline, evaluating fixed rule based DR strategies and synthesizing DR control actions. The challenge is in evaluating and taking control decisions at fast time scales in order to curtail the power consumption of the building, in return for a financial reward. We provide a model based control with regression trees algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based DR by 17% for a large DoE commercial reference building and leads to a curtailment of 380kW and over $45, 000 in savings. Our methods have been integrated into an open source tool called DR-Advisor, which acts as a recommender system for the building’s facilities manager and provides suitable control actions to meet the desired load curtailment while main- taining operations and maximizing the economic reward. DR-Advisor achieves 92.8% to 98.9% prediction accuracy for 8 buildings on Penn’s campus. We compare DR-Advisor with other data driven methods and rank 2nd on ASHRAE’s benchmarking data-set for energy prediction

    Using collective intelligence to enhance demand flexibility and climate resilience in urban areas

    Get PDF
    Collective intelligence (CI) is a form of distributed intelligence that emerges in collaborative problem solving and decision making. This work investigates the potentials of CI in demand side management (DSM) in urban areas. CI is used to control the energy performance of representative groups of buildings in Stockholm, aiming to increase the demand flexibility and climate resilience in the urban scale. CI-DSM is developed based on a simple communication strategy among buildings, using forward (1) and backward (0) signals, corresponding to applying and disapplying the adaptation measure, which is extending the indoor temperature range. A simple platform and algorithm are developed for modelling CI-DSM, considering two timescales of 15 min and 60 min. Three climate scenarios are used to represent typical, extreme cold and extreme warm years in Stockholm. Several indicators are used to assess the performance of CI-DSM, including Demand Flexibility Factor (DFF) and Agility Factor (AF), which are defined explicitly for this work. According to the results, CI increases the autonomy and agility of the system in responding to climate shocks without the need for computationally extensive central decision making systems. CI helps to gradually and effectively decrease the energy demand and absorb the shock during extreme climate events. Having a finer control timescale increases the flexibility and agility on the demand side, resulting in a faster adaptation to climate variations, shorter engagement of buildings, faster return to normal conditions and consequently a higher climate resilience

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated
    • …
    corecore