3 research outputs found

    Throughput Analysis and Optimization of Wireless-Powered Multiple Antenna Full-Duplex Relay Systems

    Get PDF
    We consider a full-duplex (FD) decode-and-forward system in which the time-switching protocol is employed by the multi-antenna relay to receive energy from the source and transmit information to the destination. The instantaneous throughput is maximized by optimizing receive and transmit beamformers at the relay and the time-split parameter. We study both optimum and suboptimum schemes. The reformulated problem in the optimum scheme achieves closed-form solutions in terms of transmit beamformer for some scenarios. In other scenarios, the optimization problem is formulated as a semi-definite relaxation problem and a rank-one optimum solution is always guaranteed. In the suboptimum schemes, the beamformers are obtained using maximum ratio combining, zero-forcing, and maximum ratio transmission. When beamformers have closed-form solutions, the achievable instantaneous and delay-constrained throughput are analytically characterized. Our results reveal that, beamforming increases both the energy harvesting and loop interference suppression capabilities at the FD relay. Moreover, simulation results demonstrate that the choice of the linear processing scheme as well as the time-split plays a critical role in determining the FD gains.Comment: Accepted for publication in IEEE Transactions on Communication

    Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems

    Get PDF
    © 2016 IEEE.We consider a full-duplex (FD) decode-and-forward system in which the time-switching protocol is employed by the multiantenna relay to receive energy from the source and transmit information to the destination. The instantaneous throughput is maximized by optimizing receive and transmit beamformers at the relay and the time-split parameter. We study both optimum and suboptimum schemes. The reformulated problem in the optimum scheme achieves closed-form solutions in terms of transmit beamformer for some scenarios. In other scenarios, the optimization problem is formulated as a semidefinite relaxation problem and a rank-one optimum solution is always guaranteed. In the suboptimum schemes, the beamformers are obtained using maximum ratio combining, zero-forcing, and maximum ratio transmission. When beamformers have closed-form solutions, the achievable instantaneous and delay-constrained throughput are analytically characterized. Our results reveal that beamforming increases both the energy harvesting and loop interference suppression capabilities at the FD relay.Moreover, simulation results demonstrate that the choice of the linear processing scheme as well as the time-split plays a critical role in determining the FD gains

    Adaptation of the IEEE 802.11 protocol for inter-satellite links in LEO satellite networks

    Get PDF
    Knowledge of the coefficient of thermal expansion (CTE) of a ceramic material is important in many application areas. Whilst the CTE can be measured, it would be useful to be able to predict the expansion behaviour of multiphase materials.. There are several models for the CTE, however, most require a knowledge of the elastic properties of the constituent phases and do not take account ofthe microstructural features of the material. If the CTE could be predicted on the basis of microstructural information, this would then lead to the ability to engineer the microstructure of multiphase ceramic materials to produce acceptable thermal expansion behaviour. To investigate this possibility, magnesia-magnesium aluminate sp~el (MMAS) composites, consisting of a magnesia matrix and magnesium aluminate s~ne'l (MAS) particles, were studied. Having determined a procedure to produce MAS fr alumina and magnesia, via solid state sintering, magnesia-rich compositions wit ~ various magnesia contents were prepared to make the MMAS composites. Further, the l\.1MAS composites prepared from different powders (i.e. from an alumina-magnesia mixture ahd from a magnesia-spinel powder) were compared. Com starch was added into the powder mixtures before sintering to make porous microstructures. Microstructural development and thermal expansion behaviour ofthe MMAS composites were investigated. Microstructures of the MAS and the MMAS composites as well as their porous bodies were quaritified from backscattered electron micrographs in terms of the connectivity of solids i.e. solid contiguity by means of linear intercept counting. Solid contiguity decreased with increasing pore content and varied with pore size, pore shape and pore distribution whereas the phase contiguity depended strongly on the chemical composition and was less influenced by porosity. ' The thermal expansion behaviour of the MAS and the MMAS composites between 100 and 1000 °C was determined experimentally. Variation in the CTE ofthe MAS relates to the degree of spinel formation while the thermal expansion of the MMAS composites depends strongly on phase content. However, the MMAS composites with similar phase compositions but made from different manufacturing processes showed differences in microstructural features and thermal expansion behaviour. Predictions of the CTE values for composites based on a simple rule-of-mixtures (ROM) using volume fraction were compared with the measured data. A conventional ROM accurately predicted the effective CTE of a range of dense alumina-silicon carbide particulate composites but was not very accurate for porous multiphase structures. It provided an upper bound prediction as all experimental values were lower. Hence, the conventional ROM was modified to take account of quantitative microstructural parameters obtained from solid contiguity. The modified ROM predicted lower values and gave a good agreement with the experimental data. Thus, it has been shown that quantitative microstructural information can be used to predict the CTE of multiphase ceramic materials with complex microstructures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore