432 research outputs found

    Cooperative Edge Caching in User-Centric Clustered Mobile Networks

    Full text link
    With files proactively stored at base stations (BSs), mobile edge caching enables direct content delivery without remote file fetching, which can reduce the end-to-end delay while relieving backhaul pressure. To effectively utilize the limited cache size in practice, cooperative caching can be leveraged to exploit caching diversity, by allowing users served by multiple base stations under the emerging user-centric network architecture. This paper explores delay-optimal cooperative edge caching in large-scale user-centric mobile networks, where the content placement and cluster size are optimized based on the stochastic information of network topology, traffic distribution, channel quality, and file popularity. Specifically, a greedy content placement algorithm is proposed based on the optimal bandwidth allocation, which can achieve (1-1/e)-optimality with linear computational complexity. In addition, the optimal user-centric cluster size is studied, and a condition constraining the maximal cluster size is presented in explicit form, which reflects the tradeoff between caching diversity and spectrum efficiency. Extensive simulations are conducted for analysis validation and performance evaluation. Numerical results demonstrate that the proposed greedy content placement algorithm can reduce the average file transmission delay up to 50% compared with the non-cooperative and hit-ratio-maximal schemes. Furthermore, the optimal clustering is also discussed considering the influences of different system parameters.Comment: IEEE TM

    Caching at the Wireless Edge: Design Aspects, Challenges and Future Directions

    Full text link
    Caching at the wireless edge is a promising way of boosting spectral efficiency and reducing energy consumption of wireless systems. These improvements are rooted in the fact that popular contents are reused, asynchronously, by many users. In this article, we first introduce methods to predict the popularity distributions and user preferences, and the impact of erroneous information. We then discuss the two aspects of caching systems, namely content placement and delivery. We expound the key differences between wired and wireless caching, and outline the differences in the system arising from where the caching takes place, e.g., at base stations, or on the wireless devices themselves. Special attention is paid to the essential limitations in wireless caching, and possible tradeoffs between spectral efficiency, energy efficiency and cache size.Comment: Published in IEEE Communications Magazin

    Analysis of Cached-Enabled Hybrid Millimter Wave & Sub-6 GHz Massive MIMO Networks

    Full text link
    This paper focuses on edge caching in mm/{\mu}Wave hybrid wireless networks, in which all mmWave SBSs and {\mu}Wave MBSs are capable of storing contents to alleviate the traffic burden on the backhaul link that connect the BSs and the core network to retrieve the non-cached contents. The main aim of this work is to address the effect of capacity-limited backhaul on the average success probability (ASP) of file delivery and latency. In particular, we consider a more practical mmWave hybrid beamforming in small cells and massive MIMO communication in macro cells. Based on stochastic geometry and a simple retransmission protocol, we derive the association probabilities by which the ASP of file delivery and latency are derived. Taking no caching event as the benchmark, we evaluate these QoS performance metrics under MC and UC placement policies. The theoretical results demonstrate that backhaul capacity indeed has a significant impact on network performance especially under weak backhaul capacity. Besides, we also show the tradeoff among cache size, retransmission attempts, ASP of file delivery, and latency. The interplay shows that cache size and retransmission under different caching placement schemes alleviates the backhaul requirements. Simulation results are present to valid our analysis

    Base Station ON-OFF Switching in 5G Wireless Networks: Approaches and Challenges

    Full text link
    To achieve the expected 1000x data rates under the exponential growth of traffic demand, a large number of base stations (BS) or access points (AP) will be deployed in the fifth generation (5G) wireless systems, to support high data rate services and to provide seamless coverage. Although such BSs are expected to be small-scale with lower power, the aggregated energy consumption of all BSs would be remarkable, resulting in increased environmental and economic concerns. In existing cellular networks, turning off the under-utilized BSs is an efficient approach to conserve energy while preserving the quality of service (QoS) of mobile users. However, in 5G systems with new physical layer techniques and the highly heterogeneous network architecture, new challenges arise in the design of BS ON-OFF switching strategies. In this article, we begin with a discussion on the inherent technical challenges of BS ON-OFF switching. We then provide a comprehensive review of recent advances on switching mechanisms in different application scenarios. Finally, we present open research problems and conclude the paper.Comment: Appear to IEEE Wireless Communications, 201

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure

    Energy Efficiency of Downlink Networks with Caching at Base Stations

    Full text link
    Caching popular contents at base stations (BSs) can reduce the backhaul cost and improve the network throughput. Yet whether locally caching at the BSs can improve the energy efficiency (EE), a major goal for 5th generation cellular networks, remains unclear. Due to the entangled impact of various factors on EE such as interference level, backhaul capacity, BS density, power consumption parameters, BS sleeping, content popularity and cache capacity, another important question is what are the key factors that contribute more to the EE gain from caching. In this paper, we attempt to explore the potential of EE of the cache-enabled wireless access networks and identify the key factors. By deriving closed-form expression of the approximated EE, we provide the condition when the EE can benefit from caching, find the optimal cache capacity that maximizes the network EE, and analyze the maximal EE gain brought by caching. We show that caching at the BSs can improve the network EE when power efficient cache hardware is used. When local caching has EE gain over not caching, caching more contents at the BSs may not provide higher EE. Numerical and simulation results show that the caching EE gain is large when the backhaul capacity is stringent, interference level is low, content popularity is skewed, and when caching at pico BSs instead of macro BSs.Comment: Accepted by Journal on Selected Areas in Communications (JSAC), Special Issue on Energy-Efficient Techniques for 5G Wireless Communication System

    Learning-based Caching in Cloud-Aided Wireless Networks

    Full text link
    This paper studies content caching in cloud-aided wireless networks where small cell base stations with limited storage are connected to the cloud via limited capacity fronthaul links. By formulating a utility (inverse of service delay) maximization problem, we propose a cache update algorithm based on spatio-temporal traffic demands. To account for the large number of contents, we propose a content clustering algorithm to group similar contents. Subsequently, with the aid of regret learning at small cell base stations and the cloud, each base station caches contents based on the learned content popularity subject to its storage constraints. The performance of the proposed caching algorithm is evaluated for sparse and dense environments while investigating the tradeoff between global and local class popularity. Simulation results show 15% and 40% gains in the proposed method compared to various baselines.Comment: 4 pages, 5 figures, Accepted, IEEE Comm Letter 201

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper
    corecore