3,664 research outputs found

    ISBDD model for classification of hyperspectral remote sensing imagery

    Get PDF
    The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this problem, an instance space-based diverse density (ISBDD) model that employs a novel training strategy is proposed in this paper. In the ISBDD model, DD values of each pixel are computed instead of learning a feature vector, and as a result, the pixel can be classified according to its DD values. Airborne hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and the Push-broom Hyperspectral Imager (PHI) are applied to evaluate the performance of the proposed model. Results show that the overall classification accuracy of ISBDD model on the AVIRIS and PHI images is up to 97.65% and 89.02%, respectively, while the kappa coefficient is up to 0.97 and 0.88, respectively

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Programmable Spectrometry -- Per-pixel Classification of Materials using Learned Spectral Filters

    Full text link
    Many materials have distinct spectral profiles. This facilitates estimation of the material composition of a scene at each pixel by first acquiring its hyperspectral image, and subsequently filtering it using a bank of spectral profiles. This process is inherently wasteful since only a set of linear projections of the acquired measurements contribute to the classification task. We propose a novel programmable camera that is capable of producing images of a scene with an arbitrary spectral filter. We use this camera to optically implement the spectral filtering of the scene's hyperspectral image with the bank of spectral profiles needed to perform per-pixel material classification. This provides gains both in terms of acquisition speed --- since only the relevant measurements are acquired --- and in signal-to-noise ratio --- since we invariably avoid narrowband filters that are light inefficient. Given training data, we use a range of classical and modern techniques including SVMs and neural networks to identify the bank of spectral profiles that facilitate material classification. We verify the method in simulations on standard datasets as well as real data using a lab prototype of the camera
    • …
    corecore