2,311 research outputs found

    On the Throughput of Large-but-Finite MIMO Networks using Schedulers

    Full text link
    This paper studies the sum throughput of the {multi-user} multiple-input-single-output (MISO) networks in the cases with large but finite number of transmit antennas and users. Considering continuous and bursty communication scenarios with different users' data request probabilities, we derive quasi-closed-form expressions for the maximum achievable throughput of the networks using optimal schedulers. The results are obtained in various cases with different levels of interference cancellation. Also, we develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of different parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers' efficiency, on the system performance. Finally, we use the recent results on the achievable rates of finite block-length codes to analyze the system performance in the cases with short packets. As demonstrated, the proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Moreover, the power amplifiers' inefficiency and the scheduling delay affect the performance of the scheduling-based systems significantly

    Different Approximation Algorithms for Channel Scheduling in Wireless Networks

    Get PDF
    We introduce a new two-side approximation method for the channel scheduling problem, which controls the accuracy of approximation in two sides by a pair of parameters . We present a series of simple and practical-for-implementation greedy algorithms which give constant factor approximation in both sides. First, we propose four approximation algorithms for the weighted channel allocation problem: 1. a greedy algorithm for the multichannel with fixed interference radius scheduling problem is proposed and an one side -IS-approximation is obtained; 2. a greedy -approximation algorithm for single channel with fixed interference radius scheduling problem is presented; 3. we improve the existing algorithm for the multichannel scheduling and show an time -approximation algorithm; 4. we speed up the polynomial time approximation scheme for single-channel scheduling through merging two algorithms and show a -approximation algorithm. Next, we study two polynomial time constant factor greedy approximation algorithms for the unweighted channel allocation with variate interference radius. A greedy -approximation algorithm for the multichannel scheduling problem and an -approximation algorithm for single-channel scheduling problem are developed. At last, we do some experiments to verify the effectiveness of our proposed methods
    • …
    corecore