329 research outputs found

    On Hamiltonicity of {claw, net}-free graphs

    Get PDF
    An st-path is a path with the end-vertices s and t. An s-path is a path with an end-vertex s. The results of this paper include necessary and sufficient conditions for a {claw, net}-free graph G with given two different vertices s, t and an edge e to have (1)a Hamiltonian s-path, (2) a Hamiltonian st-path, (3) a Hamiltonian s- and st-paths containing edge e when G has connectivity one, and (4) a Hamiltonian cycle containing e when G is 2-connected. These results imply that a connected {claw, net}-free graph has a Hamiltonian path and a 2-connected {claw, net}-free graph has a Hamiltonian cycle [D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden Subgraphs and the Hamiltonian Theme, in The Theory and Application of Graphs (Kalamazoo, Mich., 1980$), Wiley, New York (1981) 297--316.] Our proofs of (1)-(4) are shorter than the proofs of their corollaries in [D. Duffus, R.J. Gould, M.S. Jacobson] and provide polynomial-time algorithms for solving the corresponding Hamiltonicity problems. Keywords: graph, claw, net, {claw, net}-free graph, Hamiltonian path, Hamiltonian cycle, polynomial-time algorithm.Comment: 9 page

    Heavy subgraphs, stability and hamiltonicity

    Full text link
    Let GG be a graph. Adopting the terminology of Broersma et al. and \v{C}ada, respectively, we say that GG is 2-heavy if every induced claw (K1,3K_{1,3}) of GG contains two end-vertices each one has degree at least ∣V(G)∣/2|V(G)|/2; and GG is o-heavy if every induced claw of GG contains two end-vertices with degree sum at least ∣V(G)∣|V(G)| in GG. In this paper, we introduce a new concept, and say that GG is \emph{SS-c-heavy} if for a given graph SS and every induced subgraph Gβ€²G' of GG isomorphic to SS and every maximal clique CC of Gβ€²G', every non-trivial component of Gβ€²βˆ’CG'-C contains a vertex of degree at least ∣V(G)∣/2|V(G)|/2 in GG. In terms of this concept, our original motivation that a theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and NN-c-heavy graph is hamiltonian, where NN is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs SS such that every 2-connected o-heavy and SS-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu's theorem. Furthermore, our main result improves or extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones Mathematicae Graph Theor

    Hamilton cycles in almost distance-hereditary graphs

    Full text link
    Let GG be a graph on nβ‰₯3n\geq 3 vertices. A graph GG is almost distance-hereditary if each connected induced subgraph HH of GG has the property dH(x,y)≀dG(x,y)+1d_{H}(x,y)\leq d_{G}(x,y)+1 for any pair of vertices x,y∈V(H)x,y\in V(H). A graph GG is called 1-heavy (2-heavy) if at least one (two) of the end vertices of each induced subgraph of GG isomorphic to K1,3K_{1,3} (a claw) has (have) degree at least n/2n/2, and called claw-heavy if each claw of GG has a pair of end vertices with degree sum at least nn. Thus every 2-heavy graph is claw-heavy. In this paper we prove the following two results: (1) Every 2-connected, claw-heavy and almost distance-hereditary graph is Hamiltonian. (2) Every 3-connected, 1-heavy and almost distance-hereditary graph is Hamiltonian. In particular, the first result improves a previous theorem of Feng and Guo. Both results are sharp in some sense.Comment: 14 pages; 1 figure; a new theorem is adde
    • …
    corecore