1,356 research outputs found

    On Simultaneous Two-player Combinatorial Auctions

    Full text link
    We consider the following communication problem: Alice and Bob each have some valuation functions v1()v_1(\cdot) and v2()v_2(\cdot) over subsets of mm items, and their goal is to partition the items into S,SˉS, \bar{S} in a way that maximizes the welfare, v1(S)+v2(Sˉ)v_1(S) + v_2(\bar{S}). We study both the allocation problem, which asks for a welfare-maximizing partition and the decision problem, which asks whether or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For interactive protocols with poly(m)poly(m) communication, a tight 3/4-approximation is known for both [Fei06,DS06]. For interactive protocols, the allocation problem is provably harder than the decision problem: any solution to the allocation problem implies a solution to the decision problem with one additional round and logm\log m additional bits of communication via a trivial reduction. Surprisingly, the allocation problem is provably easier for simultaneous protocols. Specifically, we show: 1) There exists a simultaneous, randomized protocol with polynomial communication that selects a partition whose expected welfare is at least 3/43/4 of the optimum. This matches the guarantee of the best interactive, randomized protocol with polynomial communication. 2) For all ε>0\varepsilon > 0, any simultaneous, randomized protocol that decides whether the welfare of the optimal partition is 1\geq 1 or 3/41/108+ε\leq 3/4 - 1/108+\varepsilon correctly with probability >1/2+1/poly(m)> 1/2 + 1/ poly(m) requires exponential communication. This provides a separation between the attainable approximation guarantees via interactive (3/43/4) versus simultaneous (3/41/108\leq 3/4-1/108) protocols with polynomial communication. In other words, this trivial reduction from decision to allocation problems provably requires the extra round of communication

    Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round

    Full text link
    Many algorithms that are originally designed without explicitly considering incentive properties are later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy. The seminal result of Lucier and Borodin [SODA 2010] shows that combining a greedy algorithm that is an α\alpha-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy is O(α)O(\alpha). In this paper we significantly extend the class of algorithms for which such a result is available by showing that this close connection between approximation ratio on the one hand and Price of Anarchy on the other also holds for the design principle of relaxation and rounding provided that the relaxation is smooth and the rounding is oblivious. We demonstrate the far-reaching consequences of our result by showing its implications for sparse packing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either matches or beats the performance guarantees of known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on Economics and Computation (EC'15

    Mechanisms for Risk Averse Agents, Without Loss

    Full text link
    Auctions in which agents' payoffs are random variables have received increased attention in recent years. In particular, recent work in algorithmic mechanism design has produced mechanisms employing internal randomization, partly in response to limitations on deterministic mechanisms imposed by computational complexity. For many of these mechanisms, which are often referred to as truthful-in-expectation, incentive compatibility is contingent on the assumption that agents are risk-neutral. These mechanisms have been criticized on the grounds that this assumption is too strong, because "real" agents are typically risk averse, and moreover their precise attitude towards risk is typically unknown a-priori. In response, researchers in algorithmic mechanism design have sought the design of universally-truthful mechanisms --- mechanisms for which incentive-compatibility makes no assumptions regarding agents' attitudes towards risk. We show that any truthful-in-expectation mechanism can be generically transformed into a mechanism that is incentive compatible even when agents are risk averse, without modifying the mechanism's allocation rule. The transformed mechanism does not require reporting of agents' risk profiles. Equivalently, our result can be stated as follows: Every (randomized) allocation rule that is implementable in dominant strategies when players are risk neutral is also implementable when players are endowed with an arbitrary and unknown concave utility function for money.Comment: Presented at the workshop on risk aversion in algorithmic game theory and mechanism design, held in conjunction with EC 201
    corecore