14,067 research outputs found

    Quantum graphs whose spectra mimic the zeros of the Riemann zeta function

    Get PDF
    One of the most famous problems in mathematics is the Riemann hypothesis: that the non-trivial zeros of the Riemann zeta function lie on a line in the complex plane. One way to prove the hypothesis would be to identify the zeros as eigenvalues of a Hermitian operator, many of whose properties can be derived through the analogy to quantum chaos. Using this, we construct a set of quantum graphs that have the same oscillating part of the density of states as the Riemann zeros, offering an explanation of the overall minus sign. The smooth part is completely different, and hence also the spectrum, but the graphs pick out the low-lying zeros.Comment: 8 pages, 8 pdf figure

    Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds

    Full text link
    This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a Ω~(log1.5n)\tilde{\Omega}(\log^{1.5} n) lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over F2\mathbb{F}_2 ([Pat07]). Proving an ω(lgn)\omega(\lg n) lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai P\v{a}tra\c{s}cu's obituary [Tho13]. This result also implies the first ω(lgn)\omega(\lg n) lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of "weakly" simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebychev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the "cell sampling" method of Panigrahy et al. [PTW10]

    Sparse Allreduce: Efficient Scalable Communication for Power-Law Data

    Full text link
    Many large datasets exhibit power-law statistics: The web graph, social networks, text data, click through data etc. Their adjacency graphs are termed natural graphs, and are known to be difficult to partition. As a consequence most distributed algorithms on these graphs are communication intensive. Many algorithms on natural graphs involve an Allreduce: a sum or average of partitioned data which is then shared back to the cluster nodes. Examples include PageRank, spectral partitioning, and many machine learning algorithms including regression, factor (topic) models, and clustering. In this paper we describe an efficient and scalable Allreduce primitive for power-law data. We point out scaling problems with existing butterfly and round-robin networks for Sparse Allreduce, and show that a hybrid approach improves on both. Furthermore, we show that Sparse Allreduce stages should be nested instead of cascaded (as in the dense case). And that the optimum throughput Allreduce network should be a butterfly of heterogeneous degree where degree decreases with depth into the network. Finally, a simple replication scheme is introduced to deal with node failures. We present experiments showing significant improvements over existing systems such as PowerGraph and Hadoop

    Minimum rank and zero forcing number for butterfly networks

    Full text link
    The minimum rank of a simple graph GG is the smallest possible rank over all symmetric real matrices AA whose nonzero off-diagonal entries correspond to the edges of GG. Using the zero forcing number, we prove that the minimum rank of the butterfly network is 19[(3r+1)2r+12(1)r]\frac19\left[(3r+1)2^{r+1}-2(-1)^r\right] and that this is equal to the rank of its adjacency matrix

    Supersaturation and stability for forbidden subposet problems

    Get PDF
    We address a supersaturation problem in the context of forbidden subposets. A family F\mathcal{F} of sets is said to contain the poset PP if there is an injection i:PFi:P \rightarrow \mathcal{F} such that pPqp \le_P q implies i(p)i(q)i(p) \subset i (q). The poset on four elements a,b,c,da,b,c,d with a,bc,da,b \le c,d is called butterfly. The maximum size of a family F2[n]\mathcal{F} \subseteq 2^{[n]} that does not contain a butterfly is Σ(n,2)=(nn/2)+(nn/2+1)\Sigma(n,2)=\binom{n}{\lfloor n/2 \rfloor}+\binom{n}{\lfloor n/2 \rfloor+1} as proved by De Bonis, Katona, and Swanepoel. We prove that if F2[n]\mathcal{F} \subseteq 2^{[n]} contains Σ(n,2)+E\Sigma(n,2)+E sets, then it has to contain at least (1o(1))E(n/2+1)(n/22)(1-o(1))E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2} copies of the butterfly provided E2n1εE\le 2^{n^{1-\varepsilon}} for some positive ε\varepsilon. We show by a construction that this is asymptotically tight and for small values of EE we show that the minimum number of butterflies contained in F\mathcal{F} is exactly E(n/2+1)(n/22)E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2}
    corecore