1,460 research outputs found

    Optimization of 3-DOF Parallel Motion Devices for Low-Cost Vehicle Simulators

    Get PDF
    Motion generation systems are becoming increasingly important in certain Virtual Reality (VR) applications, such as vehicle simulators. This paper deals with the analysis of the Inverse Kinematics (IK) and the reachable workspace of a three-degrees-of-freedom (3-DOF) parallel manipulator, proposing different transformations and optimizations in order to simplify its use with Motion Cueing Algorithms (MCA) for self-motion generation in VR simulators. The proposed analysis and improvements are performed on a 3-DOF heave-pitch-roll manipulator with rotational motors, commonly used for low-cost motion-based commercial simulators. The analysis has been empirically validated against a real 3-DOF parallel manipulator in our labs using an optical tracking system. The described approach can be applied to any kind of 3-DOF parallel manipulator, or even to 6-DOF parallel manipulators. Moreover, the analysis includes objective measures (safe zones) on the workspace volume that can provide a simple but efficient way of comparing the kinematic capabilities of different kinds of motion platforms for this particular application

    An investigation into the advantages of a two seat trainer aircraft for initial v/stol pilot training

    Get PDF
    This research attempted to define the advantages of using a two-seat trainer aircraft for conducting initial Vertical/Short Take-Off and Landing (V/STOL) pilot training. Several driving factors support this concept. First, the design of aircraft and flight controls for the V/STOL environment is unique. Second, the tasks performed by V/STOL aircraft are similarly unique, and differ considerably from conventional aircraft. Third, the characteristics of the slow speed flight regime require a level of visual and motion fidelity not currently available in flight simulators. Finally, when the aircraft is operating in the V/STOL environment very little time is available for corrective action and/or ejecting from the aircraft if a dangerous situation develops. This makes close instructor supervision, available only in a two seat aircraft, even more important. Comparisons between simulator and actual flight were analyzed, along with capabilities and limitations of a variety of modern flight simulators. A review of V/STOL history. aircraft design, unique tasks, and current flight training methodology was conducted to show that V/STOL flight presents unique challenges and dangers that demand safe and effective training methods. Advances m V/STOL technology were examined for their effect of reducing the difficulties associated with V/STOL flight. It was concluded that despite all efforts to make future V/STOL aircraft safer and easier to fly, initial exposure to the slow speed and hovering flight environment would remain high risk. This requires near immediate instructor input and the option for possible intervention achievable only in a two seat aircraft

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Augmenting low-fidelity flight simulation training devices via amplified head rotations

    Get PDF
    Due to economic and operational constraints, there is an increasing demand from aviation operators and training manufacturers to extract maximum training usage from the lower fidelity suite of flight simulators. It is possible to augment low-fidelity flight simulators to achieve equivalent performance compared to high-fidelity setups but at reduced cost and greater mobility. In particular for visual manoeuvres, the virtual reality technique of head-tracking amplification for virtual view control enables full field-of-regard access even with limited field-of-view displays. This research quantified the effects of this technique on piloting performance, workload and simulator sickness by applying it to a fixed-base, low-fidelity, low-cost flight simulator. In two separate simulator trials, participants had to land a simulated aircraft from a visual traffic circuit pattern whilst scanning for airborne traffic. Initially, a single augmented display was compared to the common triple display setup in front of the pilot. Starting from the base leg, pilots exhibited tighter turns closer to the desired ground track and were more actively conducting visual scans using the augmented display. This was followed up by a second experiment to quantify the scalability of augmentation towards larger displays and field of views. Task complexity was increased by starting the traffic pattern from the downwind leg. Triple displays in front of the pilot yielded the best compromise delivering flight performance and traffic detection scores just below the triple projectors but without an increase in track deviations and the pilots were also less prone to simulator sickness symptoms. This research demonstrated that head augmentation yields clear benefits of quick user adaptation, low-cost, ease of systems integration, together with the capability to negate the impact of display sizes yet without incurring significant penalties in workload and incurring simulator sickness. The impact of this research is that it facilitates future flight training solutions using this augmentation technique to meet budgetary and mobility requirements. This enables deployment of simulators in large numbers to deliver expanded mission rehearsal previously unattainable within this class of low-fidelity simulators, and with no restrictions for transfer to other training media

    A Survey of Driving Research Simulators Around the World.

    Get PDF
    The literature review is part of the EPSRC funded project "Driver performance in the EPSRC driving simulator: a validation study". The aim of the project is to validate this simulator, located at the Department of Psychology, University of Leeds, and thereby to indicate the strengths and weaknesses of the existing configuration. It will provide guidance on how the simulator can be modified and overcome any deficiencies that are detected and also provide "benchmarks" against which other simulators can be compared. The literature review will describe the technical characteristics of the most well-known driving simulators around the world, their special features and their application areas until today. The simulators will be described and compared according to their cost (low, medium and high) and also contact addresses and photographs of the simulators will be provided by the end of the paper. In the process of gathering this information, it became apparent that there are mainly two types of papers published - either in journals or in proceedings from conferences: those describing only the technical characteristics of a specific simulator and those referring only to the applications of a specific simulator. For the first type of papers, the level of detail, format and content varies significantly where for the second one it has been proven extremely difficult to find any information about the technical characteristics of the simulator where the study had been carried out. A number of details provided in this paper are part of personal communication, or personal visits to those particular driving simulator centres or from the World Wide Web. It should also be noted here that most of the researchers contacted here offered very detail technical characteristics and application areas of their driving simulators and the author is grateful to them

    Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2023 Annual Conference

    Get PDF

    Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2023 Annual Conference

    Get PDF
    • …
    corecore