34,112 research outputs found

    Argumentation for machine learning: a survey

    Get PDF
    Existing approaches using argumentation to aid or improve machine learning differ in the type of machine learning technique they consider, in their use of argumentation and in their choice of argumentation framework and semantics. This paper presents a survey of this relatively young field highlighting, in particular, its achievements to date, the applications it has been used for as well as the benefits brought about by the use of argumentation, with an eye towards its future

    Assessing the contribution of shallow and deep knowledge sources for word sense disambiguation

    No full text
    Corpus-based techniques have proved to be very beneficial in the development of efficient and accurate approaches to word sense disambiguation (WSD) despite the fact that they generally represent relatively shallow knowledge. It has always been thought, however, that WSD could also benefit from deeper knowledge sources. We describe a novel approach to WSD using inductive logic programming to learn theories from first-order logic representations that allows corpus-based evidence to be combined with any kind of background knowledge. This approach has been shown to be effective over several disambiguation tasks using a combination of deep and shallow knowledge sources. Is it important to understand the contribution of the various knowledge sources used in such a system. This paper investigates the contribution of nine knowledge sources to the performance of the disambiguation models produced for the SemEval-2007 English lexical sample task. The outcome of this analysis will assist future work on WSD in concentrating on the most useful knowledge sources

    A Multi-Engine Approach to Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a truly-declarative programming paradigm proposed in the area of non-monotonic reasoning and logic programming, that has been recently employed in many applications. The development of efficient ASP systems is, thus, crucial. Having in mind the task of improving the solving methods for ASP, there are two usual ways to reach this goal: (i)(i) extending state-of-the-art techniques and ASP solvers, or (ii)(ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the "best" available solver on a per-instance basis. In this paper we pursue this latter direction. We first define a set of cheap-to-compute syntactic features that characterize several aspects of ASP programs. Then, we apply classification methods that, given the features of the instances in a {\sl training} set and the solvers' performance on these instances, inductively learn algorithm selection strategies to be applied to a {\sl test} set. We report the results of a number of experiments considering solvers and different training and test sets of instances taken from the ones submitted to the "System Track" of the 3rd ASP Competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve more instances compared with any solver that entered the 3rd ASP Competition. (To appear in Theory and Practice of Logic Programming (TPLP).)Comment: 26 pages, 8 figure

    A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems

    Full text link
    We propose a set of compositional design patterns to describe a large variety of systems that combine statistical techniques from machine learning with symbolic techniques from knowledge representation. As in other areas of computer science (knowledge engineering, software engineering, ontology engineering, process mining and others), such design patterns help to systematize the literature, clarify which combinations of techniques serve which purposes, and encourage re-use of software components. We have validated our set of compositional design patterns against a large body of recent literature.Comment: 12 pages,55 reference

    Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs

    Full text link
    This paper presents a method for inducing logic programs from examples that learns a new class of concepts called first-order decision lists, defined as ordered lists of clauses each ending in a cut. The method, called FOIDL, is based on FOIL (Quinlan, 1990) but employs intensional background knowledge and avoids the need for explicit negative examples. It is particularly useful for problems that involve rules with specific exceptions, such as learning the past-tense of English verbs, a task widely studied in the context of the symbolic/connectionist debate. FOIDL is able to learn concise, accurate programs for this problem from significantly fewer examples than previous methods (both connectionist and symbolic).Comment: See http://www.jair.org/ for any accompanying file
    corecore