878 research outputs found

    Achieving a vanishing SNR-gap to exact lattice decoding at a subexponential complexity

    Full text link
    The work identifies the first lattice decoding solution that achieves, in the general outage-limited MIMO setting and in the high-rate and high-SNR limit, both a vanishing gap to the error-performance of the (DMT optimal) exact solution of preprocessed lattice decoding, as well as a computational complexity that is subexponential in the number of codeword bits. The proposed solution employs lattice reduction (LR)-aided regularized (lattice) sphere decoding and proper timeout policies. These performance and complexity guarantees hold for most MIMO scenarios, all reasonable fading statistics, all channel dimensions and all full-rate lattice codes. In sharp contrast to the above manageable complexity, the complexity of other standard preprocessed lattice decoding solutions is shown here to be extremely high. Specifically the work is first to quantify the complexity of these lattice (sphere) decoding solutions and to prove the surprising result that the complexity required to achieve a certain rate-reliability performance, is exponential in the lattice dimensionality and in the number of codeword bits, and it in fact matches, in common scenarios, the complexity of ML-based solutions. Through this sharp contrast, the work was able to, for the first time, rigorously quantify the pivotal role of lattice reduction as a special complexity reducing ingredient. Finally the work analytically refines transceiver DMT analysis which generally fails to address potentially massive gaps between theory and practice. Instead the adopted vanishing gap condition guarantees that the decoder's error curve is arbitrarily close, given a sufficiently high SNR, to the optimal error curve of exact solutions, which is a much stronger condition than DMT optimality which only guarantees an error gap that is subpolynomial in SNR, and can thus be unbounded and generally unacceptable in practical settings.Comment: 16 pages - submission for IEEE Trans. Inform. Theor

    Iterative decoding for MIMO channels via modified sphere decoding

    Get PDF
    In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiantenna systems employing space-time codes, however, it is not clear what is the best way to obtain the soft information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a posteriori probability of the received symbol sequence. The new algorithm solves a nonlinear integer least squares problem and, over a wide range of rates and signal-to-noise ratios, has polynomial-time complexity. Performance of the algorithm, combined with convolutional, turbo, and low-density parity check codes, is demonstrated on several multiantenna channels. The results for systems that employ space-time modulation schemes seem to indicate that the best performing schemes are those that support the highest mutual information between the transmitted and received signals, rather than the best diversity gain

    Capacity-Achieving Iterative LMMSE Detection for MIMO-NOMA Systems

    Full text link
    This paper considers a iterative Linear Minimum Mean Square Error (LMMSE) detection for the uplink Multiuser Multiple-Input and Multiple-Output (MU-MIMO) systems with Non-Orthogonal Multiple Access (NOMA). The iterative LMMSE detection greatly reduces the system computational complexity by departing the overall processing into many low-complexity distributed calculations. However, it is generally considered to be sub-optimal and achieves relatively poor performance. In this paper, we firstly present the matching conditions and area theorems for the iterative detection of the MIMO-NOMA systems. Based on the proposed matching conditions and area theorems, the achievable rate region of the iterative LMMSE detection is analysed. We prove that by properly design the iterative LMMSE detection, it can achieve (i) the optimal sum capacity of MU-MIMO systems, (ii) all the maximal extreme points in the capacity region of MU-MIMO system, and (iii) the whole capacity region of two-user MIMO systems.Comment: 6pages, 5 figures, accepted by IEEE ICC 2016, 23-27 May 2016, Kuala Lumpur, Malaysi

    Bound-intersection detection for multiple-symbol differential unitary space-time modulation

    Get PDF
    This paper considers multiple-symbol differential detection (MSD) of differential unitary space-time modulation (DUSTM) over multiple-antenna systems. We derive a novel exact maximum-likelihood (ML) detector, called the bound-intersection detector (BID), using the extended Euclidean algorithm for single-symbol detection of diagonal constellations. While the ML search complexity is exponential in the number of transmit antennas and the data rate, our algorithm, particularly in high signal-to-noise ratio, achieves significant computational savings over the naive ML algorithm and the previous detector based on lattice reduction. We also develop four BID variants for MSD. The first two are ML and use branch-and-bound, the third one is suboptimal, which first uses BID to generate a candidate subset and then exhaustively searches over the reduced space, and the last one generalizes decision-feedback differential detection. Simulation results show that the BID and its MSD variants perform nearly ML, but do so with significantly reduced complexity
    • …
    corecore