3,479,736 research outputs found

    Federal mandates by popular demand

    Get PDF
    This paper proposes a new framework for studying federal mandates regarding public policies in areas such as environmental quality, public health, highway safety, and the provision of local public goods. Voters have single-peaked preferences along a single policy dimension. There are two levels of government, federal and local. The federal level can constrain local policy by mandating a minimum (or maximum) policy. Localities are free to adopt any policy satisfying the constraint imposed by the federal mandate. We show that voters choose federal mandates that are too strict, which leads to excessively severe mandates. We show that similar results can obtain when federal provision of the public-provided good is more efficient than local provision

    The Usefulness of Multilevel Hash Tables with Multiple Hash Functions in Large Databases

    Get PDF
    In this work, attempt is made to select three good hash functions which uniformly distribute hash values that permute their internal states and allow the input bits to generate different output bits. These functions are used in different levels of hash tables that are coded in Java Programming Language and a quite number of data records serve as primary data for testing the performances. The result shows that the two-level hash tables with three different hash functions give a superior performance over one-level hash table with two hash functions or zero-level hash table with one function in term of reducing the conflict keys and quick look-up for a particular element. The result assists to reduce the complexity of join operation in query language from O(n2) to O(1) by placing larger query result, if any, in multilevel hash tables with multiple hash functions and generate shorter query result

    Global permutation tests for multivariate ordinal data: alternatives, test statistics, and the null dilemma

    Get PDF
    We discuss two-sample global permutation tests for sets of multivariate ordinal data in possibly high-dimensional setups, motivated by the analysis of data collected by means of the World Health Organisation's International Classification of Functioning, Disability and Health. The tests do not require any modelling of the multivariate dependence structure. Specifically, we consider testing for marginal inhomogeneity and direction-independent marginal order. Max-T test statistics are known to lead to good power against alternatives with few strong individual effects. We propose test statistics that can be seen as their counterparts for alternatives with many weak individual effects. Permutation tests are valid only if the two multivariate distributions are identical under the null hypothesis. By means of simulations, we examine the practical impact of violations of this exchangeability condition. Our simulations suggest that theoretically invalid permutation tests can still be 'practically valid'. In particular, they suggest that the degree of the permutation procedure's failure may be considered as a function of the difference in group-specific covariance matrices, the proportion between group sizes, the number of variables in the set, the test statistic used, and the number of levels per variable

    Landcover degradation analysis of Mediterranean forest by means of hyperplanes obtained from mixture linear algorithms (MLA)

    Get PDF
    The percentage alteration of the Mediterranean forest landscape is one of the primary indicators for its degradation. In this sense, the land cover abundances change analysis by using mixture linear algorithms (MLA), is presented like a good alternative to study this degradation. This research analyzes the use of two information sources like Remote Sensing (Landsat-ETM+) and Field Radiometry (GER 1500) to obtain mixture hyperplanes. These are calculated by models based on least square estimations, assuming that each pure land cover (endmember) belonging to any geographic area, behaves as a random variable which distribution function is known. The mixture hyperplanes provide spectral signatures with a suitable correlation level with regard to the supplied from remote satellite sensors once corrected, for the same geographical zone. These established hyperplanes can be used in future researches about Mediterranean forest landscape changes, because they can represent the different levels of its degradation. In this sense, it is proposed that they will feed a land cover spectral library with free accessibility

    Quantum and Classical Tradeoffs

    Get PDF
    We propose an approach for quantifying a quantum circuit's quantumness as a means to understand the nature of quantum algorithmic speedups. Since quantum gates that do not preserve the computational basis are necessary for achieving quantum speedups, it appears natural to define the quantumness of a quantum circuit using the number of such gates. Intuitively, a reduction in the quantumness requires an increase in the amount of classical computation, hence giving a ``quantum and classical tradeoff''. In this paper we present two results on this direction. The first gives an asymptotic answer to the question: ``what is the minimum number of non-basis-preserving gates required to generate a good approximation to a given state''. This question is the quantum analogy of the following classical question, ``how many fair coins are needed to generate a given probability distribution'', which was studied and resolved by Knuth and Yao in 1976. Our second result shows that any quantum algorithm that solves Grover's Problem of size n using k queries and l levels of non-basis-preserving gates must have k*l=\Omega(n)

    Symmetric vs asymmetric protection levels in SDC methods for tabular data

    Get PDF
    The final publication is available at link.springer.comProtection levels on sensitive cells—which are key parameters of any statistical disclosure control method for tabular data—are related to the difficulty of any attacker to recompute a good estimation of the true cell values. Those protection levels are two numbers (one for the lower protection, the other for the upper protection) imposing a safety interval around the cell value, that is, no attacker should be able to recompute an estimate within such safety interval. In the symmetric case the lower and upper protection levels are equal; otherwise they are referred as asymmetric protection levels. In this work we empirically study the effect of symmetry in protection levels for three protection methods: cell suppression problem (CSP), controlled tabular adjustment (CTA), and interval protection (IP). Since CSP and CTA are mixed integer linear optimization problems, it is seen that the symmetry (or not) of protection levels affect to the CPU time needed to compute a solution. For IP, a linear optimization problem, it is observed that the symmetry heavily affects to the quality of the solution provided rather than to the solution time.Peer ReviewedPostprint (author's final draft

    The source of stratospheric NO and N2O

    Get PDF
    The photodissociation of O3 was investigated as a possible sources of N2O production in the stratosphere. Photolysis was conducted at 1576 A to generate the excited O2 states that react with N2 to form N2O. At this wavelength, there is a quantum yield of two for prompt production of oygen atoms, which is a consequence of the existence of two photodissociative channels giving comparable yields. One of these channels gives O(D1) and O2(b1sigma(+)subg), with a quantum yield of 0.6, whereas the other results in fragmentation of the O3, with production of three ground state oxygen atoms. The O2(b) is generated with vibrational excitation, and there are comparable populations in levels O to 3. These observations are the first to show O2(b) production from any photodissociative process, and were made under conditions in which the kinetics of vibrationally excited O2(b) can be studied. It appears that O3 photodissociation at 1576 A is not a good system for generating the higher electronic states of O2; it is likely that better results will be obtained at 1930 A

    Kondo effect in the Kohn-Sham conductance of multiple levels quantum dots

    Full text link
    At zero temperature, the Landauer formalism combined with static density functional theory is able to correctly reproduce the Kondo plateau in the conductance of the Anderson impurity model provided that an exchange-correlation potential is used which correctly exhibits steps at integer occupation. Here we extend this recent finding to multi-level quantum dots described by the constant-interaction model. We derive the exact exchange-correlation potential in this model for the isolated dot and deduce an accurate approximation for the case when the dot is weakly coupled to two leads. We show that at zero temperature and for non-degenerate levels in the dot we correctly obtain the conductance plateau for any odd number of electrons on the dot. We also analyze the case when some of the levels of the dot are degenerate and again obtain good qualitative agreement with results obtained with alternative methods. As in the case of a single level, for temperatures larger than the Kondo temperature, the Kohn-Sham conductance fails to reproduce the typical Coulomb blockade peaks. This is attributed to {\em dynamical} exchange-correlation corrections to the conductance originating from time-dependent density functional theory.Comment: 8 pages, 4 figures, submitted to special issue of pss(b
    corecore