747 research outputs found

    Completing rule bases in symbolic domains by analogy making

    Full text link
    The paper considers the problem of completing a set of parallel if-then rules that provides a partial description of how a conclusion variable depends on the values of condition variables, where each variable takes its value among a finite ordered set of labels. The proposed approach does not require the use of fuzzy sets for the interpretation of these labels or for defining similarity measures, but rather relies on the extrapolation of missing rules on the basis of analogical proportions that hold for each variable between the labels of several parallel rules. The analogical proportions are evaluated for binary and multiple-valued variables on the basis of a logical expression involving lukasiewicz implication. The underlying assumption is that the mapping partially specified by the given rules is as regular as suggested by these rules. A comparative discussion with other approaches is presented. © 2011. The authors-Published by Atlantis Press

    On the Limits of the Woods-Hudak Reconstruction of Analogical Argument

    Get PDF

    A theory of the discovery and predication of relational concepts

    Get PDF

    Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual spaces

    Get PDF
    International audienceMany logical theories are incomplete, in the sense that non-trivial conclusions about particular situations cannot be derived from them using classical deduction. In this paper, we show how the ideas of interpolation and extrapolation, which are of crucial importance in many numerical domains, can be applied in symbolic settings to alleviate this issue in the case of propositional categorization rules. Our method is based on (mainly) qualitative descriptions of how different properties are conceptually related, where we identify conceptual relations between properties with spatial relations between regions in GĂ€rdenfors conceptual spaces. The approach is centred around the view that categorization rules can often be seen as approximations of linear (or at least monotonic) mappings between conceptual spaces. We use this assumption to justify that whenever the antecedents of a number of rules stand in a relationship that is invariant under linear (or monotonic) transformations, their consequents should also stand in that relationship. A form of interpolative and extrapolative reasoning can then be obtained by applying this idea to the relations of betweenness and parallelism respectively. After discussing these ideas at the semantic level, we introduce a number of inference rules to characterize interpolative and extrapolative reasoning at the syntactic level, and show their soundness and completeness w.r.t. the proposed semantics. Finally, we show that the considered inference problems are PSPACE-hard in general, while implementations in polynomial time are possible under some relatively mild assumptions

    The Toulmin Model and Non-monotonic Reasoning

    Get PDF
    While the nature of warrants is unclear in both Toulmin’s Uses of Argument and in textbook pedagogy based on it, the theory of non-monotonic reasoning could clarify and enhance our understanding of warrants

    Conceptual Spaces for Cognitive Architectures: A Lingua Franca for Different Levels of Representation

    Get PDF
    During the last decades, many cognitive architectures (CAs) have been realized adopting different assumptions about the organization and the representation of their knowledge level. Some of them (e.g. SOAR [35]) adopt a classical symbolic approach, some (e.g. LEABRA[ 48]) are based on a purely connectionist model, while others (e.g. CLARION [59]) adopt a hybrid approach combining connectionist and symbolic representational levels. Additionally, some attempts (e.g. biSOAR) trying to extend the representational capacities of CAs by integrating diagrammatical representations and reasoning are also available [34]. In this paper we propose a reflection on the role that Conceptual Spaces, a framework developed by Peter Gšardenfors [24] more than fifteen years ago, can play in the current development of the Knowledge Level in Cognitive Systems and Architectures. In particular, we claim that Conceptual Spaces offer a lingua franca that allows to unify and generalize many aspects of the symbolic, sub-symbolic and diagrammatic approaches (by overcoming some of their typical problems) and to integrate them on a common ground. In doing so we extend and detail some of the arguments explored by Gšardenfors [23] for defending the need of a conceptual, intermediate, representation level between the symbolic and the sub-symbolic one. In particular we focus on the advantages offered by Conceptual Spaces (w.r.t. symbolic and sub-symbolic approaches) in dealing with the problem of compositionality of representations based on typicality traits. Additionally, we argue that Conceptual Spaces could offer a unifying framework for interpreting many kinds of diagrammatic and analogical representations. As a consequence, their adoption could also favor the integration of diagrammatical representation and reasoning in CAs

    Weighted logics for artificial intelligence : an introductory discussion

    Get PDF
    International audienceBefore presenting the contents of the special issue, we propose a structured introductory overview of a landscape of the weighted logics (in a general sense) that can be found in the Artificial Intelligence literature, highlighting their fundamental differences and their application areas
    • 

    corecore