513 research outputs found

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    Logical Dreams

    Full text link
    We discuss the past and future of set theory, axiom systems and independence results. We deal in particular with cardinal arithmetic

    Exponential prefixed polynomial equations

    Full text link
    A prefixed polynomial equation is an equation of the form P(t1,…,tn)=0P(t_1,\ldots,t_n) = 0, where PP is a polynomial whose variables t1,…,tnt_1,\ldots,t_n range over the natural numbers, preceded by quantifiers over some, or all, of its variables. Here, we consider exponential prefixed polynomial equations (EPPEs), where variables can also occur as exponents. We obtain a relatively concise EPPE equivalent to the combinatorial principle of the Paris-Harrington theorem for pairs (which is independent of primitive recursive arithmetic), as well as an EPPE equivalent to Goodstein's theorem (which is independent of Peano arithmetic). Some new devices are used in addition to known methods for the elimination of bounded universal quantifiers for Diophantine predicates

    Current research on G\"odel's incompleteness theorems

    Full text link
    We give a survey of current research on G\"{o}del's incompleteness theorems from the following three aspects: classifications of different proofs of G\"{o}del's incompleteness theorems, the limit of the applicability of G\"{o}del's first incompleteness theorem, and the limit of the applicability of G\"{o}del's second incompleteness theorem.Comment: 54 pages, final accepted version, to appear in The Bulletin of Symbolic Logi

    The Wonder of Colors and the Principle of Ariadne

    Get PDF
    The Principle of Ariadne, formulated in 1988 ago by Walter Carnielli and Carlos Di Prisco and later published in 1993, is an infinitary principle that is independent of the Axiom of Choice in ZF, although it can be consistently added to the remaining ZF axioms. The present paper surveys, and motivates, the foundational importance of the Principle of Ariadne and proposes the Ariadne Game, showing that the Principle of Ariadne, corresponds precisely to a winning strategy for the Ariadne Game. Some relations to other alternative. set-theoretical principles are also briefly discussed
    • …
    corecore