13,432 research outputs found

    A self-organising mixture network for density modelling

    Get PDF
    A completely unsupervised mixture distribution network, namely the self-organising mixture network, is proposed for learning arbitrary density functions. The algorithm minimises the Kullback-Leibler information by means of stochastic approximation methods. The density functions are modelled as mixtures of parametric distributions such as Gaussian and Cauchy. The first layer of the network is similar to the Kohonen's self-organising map (SOM), but with the parameters of the class conditional densities as the learning weights. The winning mechanism is based on maximum posterior probability, and the updating of weights can be limited to a small neighbourhood around the winner. The second layer accumulates the responses of these local nodes, weighted by the learning mixing parameters. The network possesses simple structure and computation, yet yields fast and robust convergence. Experimental results are also presente

    Semi-supervised model-based clustering with controlled clusters leakage

    Full text link
    In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clustering. Our method can be implemented as a module in practical expert systems to detect clusters, which combine expert knowledge with true distribution of data. Moreover, it can be used for improving the results of less flexible clustering techniques, such as projection pursuit clustering. The paper presents extensive theoretical analysis of the model and fast algorithm for its efficient optimization. Experimental results show that C3L finds high quality clustering model, which can be applied in discovering meaningful groups in partially classified data

    Machine learning for crystal identification and discovery

    Full text link
    As computers get faster, researchers -- not hardware or algorithms -- become the bottleneck in scientific discovery. Computational study of colloidal self-assembly is one area that is keenly affected: even after computers generate massive amounts of raw data, performing an exhaustive search to determine what (if any) ordered structures occur in a large parameter space of many simulations can be excruciating. We demonstrate how machine learning can be applied to discover interesting areas of parameter space in colloidal self assembly. We create numerical fingerprints -- inspired by bond orientational order diagrams -- of structures found in self-assembly studies and use these descriptors to both find interesting regions in a phase diagram and identify characteristic local environments in simulations in an automated manner for simple and complex crystal structures. Utilizing these methods allows analysis methods to keep up with the data generation ability of modern high-throughput computing environments.Comment: Fixed typo, added missing acknowledgment, added supplementary informatio

    An unsupervised machine-learning-based shock sensor for high-order supersonic flow solvers

    Full text link
    We present a novel unsupervised machine-learning sock sensor based on Gaussian Mixture Models (GMMs). The proposed GMM sensor demonstrates remarkable accuracy in detecting shocks and is robust across diverse test cases with significantly less parameter tuning than other options. We compare the GMM-based sensor with state-of-the-art alternatives. All methods are integrated into a high-order compressible discontinuous Galerkin solver, where two stabilization approaches are coupled to the sensor to provide examples of possible applications. The Sedov blast and double Mach reflection cases demonstrate that our proposed sensor can enhance hybrid sub-cell flux-differencing formulations by providing accurate information of the nodes that require low-order blending. Besides, supersonic test cases including high Reynolds numbers showcase the sensor performance when used to introduce entropy-stable artificial viscosity to capture shocks, demonstrating the same effectiveness as fine-tuned state-of-the-art sensors. The adaptive nature and ability to function without extensive training datasets make this GMM-based sensor suitable for complex geometries and varied flow configurations. Our study reveals the potential of unsupervised machine-learning methods, exemplified by this GMM sensor, to improve the robustness and efficiency of advanced CFD codes
    • 

    corecore