217 research outputs found

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    An Effective Bit Plane X-ORing Algorithm for Irretrievable Image Steganography

    Get PDF
    The technical data of concealing secret info in side verbal exchange is known as Steganography; as a result the attending of skulking info is cloaked. it is the method of concealment noesis in same or a distinct media to limit awareness via the intruders. This paper introduces new system whereby irreversible steganography is employed to hide an image inside the equal medium in order that the key info is cloaked. The key image is usually referred to as payload and therefore the supplier is usually referred to as cover image. X-OR operation is employed amongst mid-level bit planes of supplier image and excessive level bit planes of knowledge image to come up with new low level bit planes of the stego photograph. recovery method involves the X-ORing of low stage bit planes and middle degree bit planes of the stego shot. targeted on the result of the recovery, ulterior data shot is generated. A RGB color image is employed as carrier and therefore the info photograph could be a grayscale image of dimensions but or adequate the dimensions of the carrier snapshot. The planned procedure extensively will increase the embedding capability without drastically reducing the PSNR valu

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    Deep Learning for Reversible Steganography: Principles and Insights

    Get PDF
    Deep-learning\textendash{centric} reversible steganography has emerged as a promising research paradigm. A direct way of applying deep learning to reversible steganography is to construct a pair of encoder and decoder, whose parameters are trained jointly, thereby learning the steganographic system as a whole. This end-to-end framework, however, falls short of the reversibility requirement because it is difficult for this kind of monolithic system, as a black box, to create or duplicate intricate reversible mechanisms. In response to this issue, a recent approach is to carve up the steganographic system and work on modules independently. In particular, neural networks are deployed in an analytics module to learn the data distribution, while an established mechanism is called upon to handle the remaining tasks. In this paper, we investigate the modular framework and deploy deep neural networks in a reversible steganographic scheme referred to as prediction-error modulation, in which an analytics module serves the purpose of pixel intensity prediction. The primary focus of this study is on deep-learning\textendash{based} context-aware pixel intensity prediction. We address the unsolved issues reported in related literature, including the impact of pixel initialisation on prediction accuracy and the influence of uncertainty propagation in dual-layer embedding. Furthermore, we establish a connection between context-aware pixel intensity prediction and low-level computer vision and analyse the performance of several advanced neural networks

    Hybrid Cryptography and Steganography-Based Security System for IoT Networks

    Get PDF
    Despite the fact that many IoT devices are publicly accessible to everyone on the network, understanding the security risks and threats posed by cyber attacks is critical; as a result, it should be safeguarded. Plain text is constructed into encrypted text, before being delivered by using cryptography, and is then reconstructed back to plain text after receiving a response from the recipient. The steganography technique can be used to hide sensitive information incorporated in a text, audio, or video file. One approach is to hide data in bits that correspond to successive rows of pixels with the same color in an image file.  As a consequence, the image file retains the original's appearance while also containing "noise" patterns made out of common, unencrypted data. To do this, the encrypted data is subtly applied to the redundant data. In this work, it is suggested that IoT network data be encrypted using cryptography, and that an encrypted message be concealed inside an image file using steganography. Additionally, it is suggested to enhance the number of bits that may be stored within a single picture pixel.  The payload that may be sent through an image is significantly increased by incorporating Convolutional Neural Networks into the classic steganography technique. In this work, we propose, design, and train Convolutional Neural Networks (CNN) to enhance the amount of data that can be securely encrypted and decrypted to show the original message

    Review of steganalysis of digital images

    Get PDF
    Steganography is the science and art of embedding hidden messages into cover multimedia such as text, image, audio and video. Steganalysis is the counterpart of steganography, which wants to identify if there is data hidden inside a digital medium. In this study, some specific steganographic schemes such as HUGO and LSB are studied and the steganalytic schemes developed to steganalyze the hidden message are studied. Furthermore, some new approaches such as deep learning and game theory, which have seldom been utilized in steganalysis before, are studied. In the rest of thesis study some steganalytic schemes using textural features including the LDP and LTP have been implemented
    • …
    corecore