19,564 research outputs found

    Non-Linear Shallow Water Equations numerical integration on curvilinear boundary-conforming grids

    Get PDF
    An Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the Shallow Water Equations on generalized curvilinear coordinate systems is proposed. The Shallow Water Equations are expressed in a contravariant formulation in which Christoffel symbols are avoided. The equations are solved by using a high-resolution finite-volume method incorporated with an exact Riemann Solver. A procedure developed in order to correct errors related to the difficulties of numerically satisfying the metric identities on generalized boundary-conforming grids is presented; this procedure allows the numerical scheme to satisfy the freestream preservation property on highly-distorted grids. The capacity of the proposed model is verified against test cases present in literature. The results obtained are compared with analytical solutions and alternative numerical solutions

    Well-posed lateral boundary conditions for spectral semi-implicit semi-Lagrangian schemes : tests in a one-dimensional model

    Get PDF
    The aim of this paper is to investigate the feasibility of well-posed lateral boundary conditions in a Fourier spectral semi-implicit semi-Lagrangian one-dimensional model. Two aspects are analyzed: (i) the complication of designing well-posed boundary conditions for a spectral semi-implicit scheme and (ii) the implications of such a lateral boundary treatment for the semi-Lagrangian trajectory computations at the lateral boundaries. Straightforwardly imposing boundary conditions in the gridpoint-explicit part of the semi-implicit time-marching scheme leads to numerical instabilities for time steps that are relevant in today's numerical weather prediction applications. It is shown that an iterative scheme is capable of curing these instabilities. This new iterative boundary treatment has been tested in the framework of the one-dimensional shallow-water equations leading to a significant improvement in terms of stability. As far as the semi-Lagrangian part of the time scheme is concerned, the use of a trajectory truncation scheme has been found to be stable in experimental tests, even for large values of the advective Courant number. It is also demonstrated that a well-posed buffer zone can be successfully applied in this spectral context. A promising (but not easily implemented) alternative to these three above-referenced schemes has been tested and is also presented here
    • …
    corecore