1,685 research outputs found

    A tabu search heuristic for the vehicle routing problem with two-dimensional loading constraints

    Get PDF
    This article addresses the well-known Capacitated Vehicle Routing Problem (CVRP), in the special case where the demand of a customer consists of a certain number of two-dimensional weighted items. The problem calls for the minimization of the cost of transportation needed for the delivery of the goods demanded by the customers, and carried out by a fleet of vehicles based at a central depot. In order to accommodate all items on the vehicles, a feasibility check of the two-dimensional packing (2L) must be executed on each vehicle. The overall problem, denoted as 2L-CVRP, is NP-hard and particularly difficult to solve in practice. We propose a Tabu Search algorithm, in which the loading component of the problem is solved through heuristics, lower bounds, and a truncated branch-and-bound procedure. The effectiveness of the algorithm is demonstrated through extensivecomputational experiments

    Container Loading Problems: A State-of-the-Art Review

    Get PDF
    Container loading is a pivotal function for operating supply chains efficiently. Underperformance results in unnecessary costs (e.g. cost of additional containers to be shipped) and in an unsatisfactory customer service (e.g. violation of deadlines agreed to or set by clients). Thus, it is not surprising that container loading problems have been dealt with frequently in the operations research literature. It has been claimed though that the proposed approaches are of limited practical value since they do not pay enough attention to constraints encountered in practice.In this paper, a review of the state-of-the-art in the field of container loading will be given. We will identify factors which - from a practical point of view - need to be considered when dealing with container loading problems and we will analyze whether and how these factors are represented in methods for the solution of such problems. Modeling approaches, as well as exact and heuristic algorithms will be reviewed. This will allow for assessing the practical relevance of the research which has been carried out in the field. We will also mention several issues which have not been dealt with satisfactorily so far and give an outlook on future research opportunities

    Containership Load Planning with Crane Operations

    Get PDF
    Since the start of the containerization revolution in 1950's, not only the TEU capacity of the vessels has been increasing constantly, but also the number of fully cellular container ships has expanded substantially. Because of the tense competition among ports in recent years, improving the operational efficiency of ports has become an important issue in containership operations. Arrangement of containers both within the container terminal and on the containership play an important role in determining the berthing time. The berthing time of a containership is mainly composed of the unloading and loading time of containers. Containers in a containership are stored in stacks, making a container directly accessible only if it is on the top of one stack. The task of determining a good container arrangement to minimize the number of re-handlings while maintaining the ship's stability over several ports is called stowage planning, which is an everyday problem solved by ship planners. The horizontal distribution of the containers over the bays affects crane utilization and overall ship berthing time. In order to increase the terminal productivity and reduce the turnaround time, the stowage planning must conform to the berth design. Given the configuration of berths and cranes at each visiting port, the stowage planning must take into account the utilization of quay cranes as well as the reduction of unnecessary shifts to minimize the total time at all ports over the voyage. This dissertation introduces an optimization model to solve the stowage planning problem with crane utilization considerations. The optimization model covers a wide range of operational and structural constraints for containership load planning. In order to solve real-size problems, a meta-heuristic approach based on genetic algorithms is designed and implemented which embeds a crane split approximation routine. The genetic encoding is ultra-compact and represents grouping, sorting and assignment strategies that might be applied to form the stowage pattern. The evaluation procedure accounts for technical specification of the cranes as well as the crane split. Numerical results show that timely solution for ultra large size containerships can be obtained under different scenarios

    A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints

    Get PDF
    In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with 3D loading constraints (3L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as a set of 3D rectangular items (boxes) and the vehicle capacity is replaced by a 3D loading space. We investigate which constraints will ensure that no reloading effort will occur, i.e. that no box is moved after loading and before unloading. A spectrum of 3L-PDP variants is introduced with different characteristics in terms of reloading effort. We propose a hybrid algorithm for solving the 3L-PDP consisting of a routing and a packing procedure. The routing procedure modifies a well-known large neighborhood search for the 1D-PDP. A tree search heuristic is responsible for packing boxes. Computational experiments were carried out using 54 newly proposed 3L-PDP benchmark instances

    Strip packing problem with constraints in order and stability

    Get PDF
    Orientador: FlĆ”vio Keidi MiyazawaDissertaĆ§Ć£o (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaĆ§Ć£oResumo: Neste trabalho lidamos com o problema de Empacotamento em Faixa Bidimensional considerando o caso em que os itens devem ser dispostos de forma a manter o empacotamento estĆ”vel e satisfazer uma ordem de descarregamento imposta. Consideramos o caso em que a orientaĆ§Ć£o dos itens Ć© fixa. Definimos uma metodologia para analisar a estabilidade do empacotamento observando as condiƧƵes de equilĆ­brio estĆ”tico para corpos rĆ­gidos. Desenvolvemos heurĆ­sticas e formulamos um programa linear inteiro para o problema de Empacotamento em Faixa sujeito a tais restriƧƵes. A resoluĆ§Ć£o da formulaĆ§Ć£o inteira ocorre atravĆ©s de uma estratĆ©gia do tipo branch-and-cut. As restriƧƵes de estabilidade foram inseridas como planos de corte de maneira a remover empacotamentos que nĆ£o sĆ£o estĆ”veis. Em nossos experimentos computacionais, vemos que o modelo proposto Ć© adequado para lidar com instĆ¢ncias de pequeno atĆ© mĆ©dio porte, dentro de um tempo computacional razoĆ”velAbstract: This paper investigates the Two-Dimensional Strip Packing Problem considering the case in which the items should be arranged to form a stable packing and satisfy an order of unloading, so that after unloading, the packing is still stable. We consider the case where the items are oriented and rotations are not allowed. We present a methodology to analyze the stability of the packing observing the conditions for static equilibrium of rigid bodies. We present heuristics and formulate an integer linear programming model for the Strip Packing problem considering such constraints. To solve the integer formulation, we develop a branch-and-cut approach. For each integer solution obtained during the branch-and-cut algorithm, corresponding to a non-stable packing, we insert a cutting plane for which this integer solution is not satisfied. In our computational experiments, we see that the proposed model is suitable to deal with small and mid-sized instances. Some optimal solutions were obtained after few hours of CPU processingMestradoMestre em CiĆŖncia da ComputaĆ§Ć£

    ProbleĢ€mes de tourneĢes de veĢhicules avec contraintes de chargement

    Full text link
    Cette theĢ€se sā€™inteĢresse aux probleĢ€mes de tourneĢes de veĢhicules ouĢ€ lā€™on retrouve des contraintes de chargement ayant un impact sur les seĢquences de livraisons permises. Plus particulieĢ€rement, les items placeĢs dans lā€™espace de chargement dā€™un veĢhicule doivent eĢ‚tre directement accessibles lors de leur livraison sans quā€™il soit neĢcessaire de deĢplacer dā€™autres items. Ces probleĢ€mes sont rencontreĢs dans plusieurs entreprises de transport qui livrent de gros objets (meubles, eĢlectromeĢnagers). Le premier article de cette theĢ€se porte sur une meĢthode exacte pour un probleĢ€me de confection dā€™une seule tourneĢe ouĢ€ un veĢhicule, dont lā€™aire de chargement est diviseĢe en un certain nombre de piles, doit effectuer des cueillettes et des livraisons respectant une contrainte de type dernier entreĢ, premier sorti. Lors dā€™une collecte, les items recueillis doivent neĢcessairement eĢ‚tre deĢposeĢs sur le dessus de lā€™une des piles. Par ailleurs, lors dā€™une livraison, les items doivent neĢcessairement se trouver sur le dessus de lā€™une des piles. Une meĢthode de seĢparation et eĢvaluation avec plans seĢcants est proposeĢe pour reĢsoudre ce probleĢ€me. Le second article preĢsente une meĢthode de reĢsolution exacte, eĢgalement de type seĢparation et eĢvaluation avec plans seĢcants, pour un probleĢ€me de tourneĢes de veĢhicules avec chargement dā€™items rectangulaires en deux dimensions. Lā€™aire de chargement des veĢhicules correspond aussi aĢ€ un espace rectangulaire avec une orientation, puisque les items doivent eĢ‚tre chargeĢs et deĢchargeĢs par lā€™un des coĢ‚teĢs. Une contrainte impose que les items dā€™un client soient directement accessibles au moment de leur livraison. Le dernier article aborde une probleĢ€me de tourneĢes de veĢhicules avec chargement dā€™items rectangulaires, mais ouĢ€ les dimensions de certains items ne sont pas connus avec certitude lors de la planification des tourneĢes. Il est toutefois possible dā€™associer une distribution de probabiliteĢs discreĢ€te sur les dimensions possibles de ces items. Le probleĢ€me est reĢsolu de manieĢ€re exacte avec la meĢthode L-Shape en nombres entiers.In this thesis, we study mixed vehicle routing and loading problems where a constraint is imposed on delivery sequences. More precisely, the items in the loading area of a vehicle must be directly accessible, without moving any other item, at delivery time. These problems are often found in the transportation of large objects (furniture, appliances). The first paper proposes a branch-and-cut algorithm for a variant of the single vehicle pickup and delivery problem, where the loading area of the vehicle is divided into several stacks. When an item is picked up, it must be placed on the top of one of these stacks. Conversely, an item must be on the top of one of these stacks to be delivered. This requirement is called ā€œLast In First Outā€ or LIFO constraint. The second paper presents another branch-and-cut algorithm for a vehicle routing and loading problem with two-dimensional rectangular items. The loading area of the vehicles is also a rectangular area where the items are taken out from one side. A constraint states that the items of a given customer must be directly accessible at delivery time. The last paper considers a stochastic vehicle routing and loading problem with two- dimensional rectangular items where the dimensions of some items are unknown when the routes are planned. However, it is possible to associate a discrete probability distribution on the dimensions of these items. The problem is solved with the Integer L-Shaped method

    Shipping Configuration Optimization with Topology-Based Guided Local Search for Irregular Shaped Shipments

    Get PDF
    Manufacturer that uses containers to ship products always works to optimize the space inside the containers. Container loading problems (CLP) are widely encountered in forms of raw material flow and handling, product shipments, warehouse management, facility floor planning, as well as strip-packing nesting problems.Investigations and research conducted two decades ago were logistic orientated, on the basis of the empirical approaches
    • ā€¦
    corecore