88,193 research outputs found

    Batch Policy Learning under Constraints

    Get PDF
    When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting

    Deep Q-Learning versus Proximal Policy Optimization: Performance Comparison in a Material Sorting Task

    Full text link
    This paper presents a comparison between two well-known deep Reinforcement Learning (RL) algorithms: Deep Q-Learning (DQN) and Proximal Policy Optimization (PPO) in a simulated production system. We utilize a Petri Net (PN)-based simulation environment, which was previously proposed in related work. The performance of the two algorithms is compared based on several evaluation metrics, including average percentage of correctly assembled and sorted products, average episode length, and percentage of successful episodes. The results show that PPO outperforms DQN in terms of all evaluation metrics. The study highlights the advantages of policy-based algorithms in problems with high-dimensional state and action spaces. The study contributes to the field of deep RL in context of production systems by providing insights into the effectiveness of different algorithms and their suitability for different tasks.Comment: Submitted and accepted version to the 32nd International Symposium on Industrial Electronics (ISIE), Helsinki, Finlan

    Count-Based Exploration in Feature Space for Reinforcement Learning

    Full text link
    We introduce a new count-based optimistic exploration algorithm for Reinforcement Learning (RL) that is feasible in environments with high-dimensional state-action spaces. The success of RL algorithms in these domains depends crucially on generalisation from limited training experience. Function approximation techniques enable RL agents to generalise in order to estimate the value of unvisited states, but at present few methods enable generalisation regarding uncertainty. This has prevented the combination of scalable RL algorithms with efficient exploration strategies that drive the agent to reduce its uncertainty. We present a new method for computing a generalised state visit-count, which allows the agent to estimate the uncertainty associated with any state. Our \phi-pseudocount achieves generalisation by exploiting same feature representation of the state space that is used for value function approximation. States that have less frequently observed features are deemed more uncertain. The \phi-Exploration-Bonus algorithm rewards the agent for exploring in feature space rather than in the untransformed state space. The method is simpler and less computationally expensive than some previous proposals, and achieves near state-of-the-art results on high-dimensional RL benchmarks.Comment: Conference: Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI-17), 8 pages, 1 figur

    Benchmarking Deep Reinforcement Learning for Continuous Control

    Get PDF
    Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. In this work, we present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with very high state and action dimensionality such as 3D humanoid locomotion, tasks with partial observations, and tasks with hierarchical structure. We report novel findings based on the systematic evaluation of a range of implemented reinforcement learning algorithms. Both the benchmark and reference implementations are released at https://github.com/rllab/rllab in order to facilitate experimental reproducibility and to encourage adoption by other researchers.Comment: 14 pages, ICML 201
    • …
    corecore