438 research outputs found

    Kripke Models for Classical Logic

    Get PDF
    We introduce a notion of Kripke model for classical logic for which we constructively prove soundness and cut-free completeness. We discuss the novelty of the notion and its potential applications

    The First-Order Hypothetical Logic of Proofs

    Get PDF
    The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [​[t]​]​A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[​[t]​]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [​[t]​]​A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given

    Time-dependent current density functional theory on a lattice

    Full text link
    A rigorous formulation of time-dependent current density functional theory (TDCDFT) on a lattice is presented. The density-to-potential mapping and the V{\cal V}-representability problems are reduced to a solution of a certain nonlinear lattice Schr\"odinger equation, to which the standard existence and uniqueness results for nonliner differential equations are applicable. For two versions of the lattice TDCDFT we prove that any continuous in time current density is locally V{\cal V}-representable (both interacting and noninteracting), provided in the initial state the local kinetic energy is nonzero everywhere. In most cases of physical interest the V{\cal V}-representability should also hold globally in time. These results put the application of TDCDFT to any lattice model on a firm ground, and open a way for studying exact properties of exchange correlation potentials.Comment: revtex4, 9 page

    What shapes the loss landscape of self-supervised learning?

    Full text link
    Prevention of complete and dimensional collapse of representations has recently become a design principle for self-supervised learning (SSL). However, questions remain in our theoretical understanding: When do those collapses occur? What are the mechanisms and causes? We answer these questions by deriving and thoroughly analyzing an analytically tractable theory of SSL loss landscapes. In this theory, we identify the causes of the dimensional collapse and study the effect of normalization and bias. Finally, we leverage the interpretability afforded by the analytical theory to understand how dimensional collapse can be beneficial and what affects the robustness of SSL against data imbalance.Comment: Published at ICLR 202

    A modern look at the relationship between sharpness and generalization

    Full text link
    Sharpness of minima is a promising quantity that can correlate with generalization in deep networks and, when optimized during training, can improve generalization. However, standard sharpness is not invariant under reparametrizations of neural networks, and, to fix this, reparametrization-invariant sharpness definitions have been proposed, most prominently adaptive sharpness (Kwon et al., 2021). But does it really capture generalization in modern practical settings? We comprehensively explore this question in a detailed study of various definitions of adaptive sharpness in settings ranging from training from scratch on ImageNet and CIFAR-10 to fine-tuning CLIP on ImageNet and BERT on MNLI. We focus mostly on transformers for which little is known in terms of sharpness despite their widespread usage. Overall, we observe that sharpness does not correlate well with generalization but rather with some training parameters like the learning rate that can be positively or negatively correlated with generalization depending on the setup. Interestingly, in multiple cases, we observe a consistent negative correlation of sharpness with out-of-distribution error implying that sharper minima can generalize better. Finally, we illustrate on a simple model that the right sharpness measure is highly data-dependent, and that we do not understand well this aspect for realistic data distributions. The code of our experiments is available at https://github.com/tml-epfl/sharpness-vs-generalization

    SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities

    Full text link
    Many approaches in machine learning rely on a weighted graph to encode the similarities between samples in a dataset. Entropic affinities (EAs), which are notably used in the popular Dimensionality Reduction (DR) algorithm t-SNE, are particular instances of such graphs. To ensure robustness to heterogeneous sampling densities, EAs assign a kernel bandwidth parameter to every sample in such a way that the entropy of each row in the affinity matrix is kept constant at a specific value, whose exponential is known as perplexity. EAs are inherently asymmetric and row-wise stochastic, but they are used in DR approaches after undergoing heuristic symmetrization methods that violate both the row-wise constant entropy and stochasticity properties. In this work, we uncover a novel characterization of EA as an optimal transport problem, allowing a natural symmetrization that can be computed efficiently using dual ascent. The corresponding novel affinity matrix derives advantages from symmetric doubly stochastic normalization in terms of clustering performance, while also effectively controlling the entropy of each row thus making it particularly robust to varying noise levels. Following, we present a new DR algorithm, SNEkhorn, that leverages this new affinity matrix. We show its clear superiority to state-of-the-art approaches with several indicators on both synthetic and real-world datasets

    On Model-Theoretic Strong Normalization for Truth-Table Natural Deduction

    Get PDF
    • …
    corecore