303 research outputs found

    Fault-Tolerant Consensus in Unknown and Anonymous Networks

    Get PDF
    This paper investigates under which conditions information can be reliably shared and consensus can be solved in unknown and anonymous message-passing networks that suffer from crash-failures. We provide algorithms to emulate registers and solve consensus under different synchrony assumptions. For this, we introduce a novel pseudo leader-election approach which allows a leader-based consensus implementation without breaking symmetry

    The Alpha of Indulgent Consensus

    Get PDF
    This paper presents a simple framework unifying a family of consensus algorithms that can tolerate process crash failures and asynchronous periods of the network, also called indulgent consensus algorithms. Key to the framework is a new abstraction we introduce here, called Alpha, and which precisely captures consensus safety. Implementations of Alpha in shared memory, storage area network, message passing and active disk systems are presented, leading to directly derived consensus algorithms suited to these communication media. The paper also considers the case where the number of processes is unknown and can be arbitrarily larg

    Eventual election of multiple leaders for solving consensus in anonymous systems

    Get PDF
    In classical distributed systems, each process has a unique identity. Today, new distributed systems have emerged where a unique identity is not always possible to be assigned to each process. For example, in many sensor networks a unique identity is not possible to be included in each device due to its small storage capacity, reduced computational power, or the huge number of devices to be identified. In these cases, we have to work with anonymous distributed systems where processes cannot be identified. Consensus cannot be solved in classical and anonymous asynchronous distributed systems where processes can crash. To bypass this impossibility result, failure detectors are added to these systems. It is known that ? is the weakest failure detector class for solving consensus in classical asynchronous systems when amajority of processes never crashes. Although A? was introduced as an anonymous version of ?, to find the weakest failure detector in anonymous systems to solve consensus when amajority of processes never crashes is nowadays an open question. Furthermore, A? has the important drawback that it is not implementable. Very recently, A? has been introduced as a counterpart of ? for anonymous systems. In this paper, we show that the A? failure detector class is strictly weaker than A? (i.e., A? provides less information about process crashes than A?). We also present in this paper the first implementation of A? (hence, we also show that A? is implementable), and, finally, we include the first implementation of consensus in anonymous asynchronous systems augmented with A? and where a majority of processes does not crash

    The Failure Detector Abstraction

    Full text link
    This paper surveys the failure detector concept through two dimensions. First we study failure detectors as building blocks to simplify the design of reliable distributed algorithms. More specifically, we illustrate how failure detectors can factor out timing assumptions to detect failures in distributed agreement algorithms. Second, we study failure detectors as computability benchmarks. That is, we survey the weakest failure detector question and illustrate how failure detectors can be used to classify problems. We also highlights some limitations of the failure detector abstraction along each of the dimensions

    Distributed eventual leader election in the crash-recovery and general omission failure models.

    Get PDF
    102 p.Distributed applications are present in many aspects of everyday life. Banking, healthcare or transportation are examples of such applications. These applications are built on top of distributed systems. Roughly speaking, a distributed system is composed of a set of processes that collaborate among them to achieve a common goal. When building such systems, designers have to cope with several issues, such as different synchrony assumptions and failure occurrence. Distributed systems must ensure that the delivered service is trustworthy.Agreement problems compose a fundamental class of problems in distributed systems. All agreement problems follow the same pattern: all processes must agree on some common decision. Most of the agreement problems can be considered as a particular instance of the Consensus problem. Hence, they can be solved by reduction to consensus. However, a fundamental impossibility result, namely (FLP), states that in an asynchronous distributed system it is impossible to achieve consensus deterministically when at least one process may fail. A way to circumvent this obstacle is by using unreliable failure detectors. A failure detector allows to encapsulate synchrony assumptions of the system, providing (possibly incorrect) information about process failures. A particular failure detector, called Omega, has been shown to be the weakest failure detector for solving consensus with a majority of correct processes. Informally, Omega lies on providing an eventual leader election mechanism

    Wait-Freedom with Advice

    Full text link
    We motivate and propose a new way of thinking about failure detectors which allows us to define, quite surprisingly, what it means to solve a distributed task \emph{wait-free} \emph{using a failure detector}. In our model, the system is composed of \emph{computation} processes that obtain inputs and are supposed to output in a finite number of steps and \emph{synchronization} processes that are subject to failures and can query a failure detector. We assume that, under the condition that \emph{correct} synchronization processes take sufficiently many steps, they provide the computation processes with enough \emph{advice} to solve the given task wait-free: every computation process outputs in a finite number of its own steps, regardless of the behavior of other computation processes. Every task can thus be characterized by the \emph{weakest} failure detector that allows for solving it, and we show that every such failure detector captures a form of set agreement. We then obtain a complete classification of tasks, including ones that evaded comprehensible characterization so far, such as renaming or weak symmetry breaking

    Asynchronous Consensus with Bounded Memory.

    Get PDF
    International audienceWe present here a bounded memory size Obstruction-Free consensus algorithm for the asynchronous shared memory model. More precisely for a set of n processes, this algorithm uses n+2n+2 multi-writer multi-reader registers, each of these registers being of size O(log(n))O(log⁡(n)) bits. From this, we get a bounded memory size space complexity consensus algorithm with single-writer multi-reader registers and a bounded memory size space complexity consensus algorithm in the asynchronous message passing model with a majority of correct processes. As it is easy to ensure the Obstruction-Free assumption with randomization (or with leader election failure detector ΩΩ) we obtain a bounded memory size randomized consensus algorithm and a bounded memory size consensus algorithm with failure detector

    Asynchronous Consensus with Bounded Memory

    Get PDF
    We present here a bounded memory consensus Obstruction-Free algorithm for the asynchronous shared memory model. More precisely for a set of n processes, this algorithm uses n + 1 multi-writer multi-reader (MWMR) registers, each of these registers being of size O(log(n)) bits. Then we get a O(n log(n))-bits size complexity consensus algorithm with single-writer multi-reader (SWMR) registers and a O(n log(n))-bits complexity consensus algorithm in the asynchronous message passing model with a majority of correct processes. As it is easy to ensure the Obstruction-Free assumption with randomization (or with leader election failure detector) we obtain a bounded memory size randomized consensus algorithm and a bounded memory size consensus algorithm with failure detector
    corecore