513 research outputs found

    Integrating Deep Learning into Digital Rock Analysis Workflow

    Full text link
    Digital Rock Analysis (DRA) has expanded our knowledge about natural phenomena in various geoscience specialties. DRA as an emerging technology has limitations including (1) the trade-off between the size of spatial domain and resolution, (2) methodological and human-induced errors in segmentation, and (3) the computational costs associated with intensive modeling. Deep learning (DL) methods are utilized to alleviate these limitations. First, two DL frameworks are utilized to probe the performance gains from using Convolutional Neural Networks (CNN) to super-resolve and segment real multi-resolution X-ray images of complex carbonate rocks. The first framework experiments the applications of U-Net and U-ResNet architectures to obtain macropore, solid, and micropore segmented images in an end-to-end scheme. The second framework segregates the super-resolution and segmentation into two networks: EDSR and U-ResNet. Both frameworks show consistent performance indicated by the voxel-wise accuracy metrics, the measured phase morphology, and flow characteristics. The end-to-end frameworks are shown to be superior to using a segregated approach confirming the adequacy of end-to-end learning for performing complex tasks. Second, CNNs accuracy margins in estimating physical properties of porous media 2d X-ray images are investigated. Binary and greyscale sandstone images are used as an input to CNNs architectures to estimate porosity, specific surface area, and average pore size of three sandstone images. The results show encouraging margins of accuracy where the error in estimating these properties can be up to 6% when using binary images and up to 7% when using greyscale images. Third, the suitability of CNNs as regression tools to predict a more challenging property, permeability, is investigated. Two complex CNNs architectures (ResNet and ResNext) are applied to learn the morphology of pore space in 3D porous media images for flow-based characterization. The dataset includes more than 29,000 3d subvolumes of multiple sandstone and carbonates rocks. The findings show promising regression accuracy using binary images. Accuracy gains are observed using conductivity maps as an input to the networks. Permeability inference on unseen samples can be achieved in 120 ms/sample with an average relative error of 18.9%. This thesis demonstrates the significant potential of deep learning in improving DRA capabilities

    Multiphysics simulations: challenges and opportunities.

    Full text link

    Ein Gas-Kinetic Scheme Ansatz zur Modellierung und Simulation von Feuer auf massiv paralleler Hardware

    Get PDF
    This work presents a simulation approach based on a Gas Kinetic Scheme (GKS) for the simulation of fire that is implemented on massively parallel hardware in terms of Graphics Processing Units (GPU) in the framework of General Purpose computing on Graphics Processing Units (GPGPU). Gas kinetic schemes belong to the class of kinetic methods because their governing equation is the mesoscopic Boltzmann equation, rather than the macroscopic Navier-Stokes equations. Formally, kinetic methods have the advantage of a linear advection term which simplifies discretization. GKS inherently contains the full energy equation which is required for compressible flows. GKS provides a flux formulation derived from kinetic theory and is usually implemented as a finite volume method on cell-centered grids. In this work, we consider an implementation on nested Cartesian grids. To that end, a coupling algorithm for uniform grids with varying resolution was developed and is presented in this work. The limitation to local uniform Cartesian grids allows an efficient implementation on GPUs, which belong to the class of many core processors, i.e. massively parallel hardware. Multi-GPU support is also implemented and efficiency is enhanced by communication hiding. The fluid solver is validated for several two- and three-dimensional test cases including natural convection, turbulent natural convection and turbulent decay. It is subsequently applied to a study of boundary layer stability of natural convection in a cavity with differentially heated walls and large temperature differences. The fluid solver is further augmented by a simple combustion model for non-premixed flames. It is validated by comparison to experimental data for two different fire plumes. The results are further compared to the industry standard for fire simulation, i.e. the Fire Dynamics Simulator (FDS). While the accuracy of GKS appears slightly reduced as compared to FDS, a substantial speedup in terms of time to solution is found. Finally, GKS is applied to the simulation of a compartment fire. This work shows that the GKS has a large potential for efficient high performance fire simulations.Diese Arbeit präsentiert einen Simulationsansatz basierend auf einer gaskinetischen Methode (eng. Gas Kinetic Scheme, GKS) zur Simulation von Bränden, welcher für massiv parallel Hardware im Sinne von Grafikprozessoren (eng. Graphics Processing Units, GPUs) implementiert wurde. GKS gehört zur Klasse der kinetischen Methoden, die nicht die makroskopischen Navier-Stokes Gleichungen, sondern die mesoskopische Boltzmann Gleichung lösen. Formal haben kinetische Methoden den Vorteil, dass der Advektionsterms linear ist. Dies vereinfacht die Diskretisierung. In GKS ist die vollständige Energiegleichung, die zur Lösung kompressibler Strömungen benötigt wird, enthalten. GKS formuliert den Fluss von Erhaltungsgrößen basierend auf der gaskinetischen Theorie und wird meistens im Rahmen der Finiten Volumen Methode umgesetzt. In dieser Arbeit betrachten wir eine Implementierung auf gleichmäßigen Kartesischen Gittern. Dazu wurde ein Kopplungsalgorithmus für die Kombination von Gittern unterschiedlicher Auflösung entwickelt. Die Einschränkung auf lokal gleichmäßige Gitter erlaubt eine effiziente Implementierung auf GPUs, welche zur Klasse der massiv parallelen Hardware gehören. Des Weiteren umfasst die Implementierung eine Unterstützung für Multi-GPU mit versteckter Kommunikation. Der Strömungslöser ist für zwei und dreidimensionale Testfälle validiert. Dabei reichen die Tests von natürlicher Konvektion über turbulente Konvektion bis hin zu turbulentem Zerfall. Anschließend wird der Löser genutzt um die Grenzschichtstabilität in natürlicher Konvektion bei großen Temperaturunterschieden zu untersuchen. Darüber hinaus umfasst der Löser ein einfaches Verbrennungsmodell für Diffusionsflammen. Dieses wird durch Vergleich mit experimentellen Feuern validiert. Außerdem werden die Ergebnisse mit dem gängigen Brandsimulationsprogramm FDS (eng. Fire Dynamics Simulator) verglichen. Die Qualität der Ergebnisse ist dabei vergleichbar, allerdings ist der in dieser Arbeit entwickelte Löser deutlich schneller. Anschließend wird das GKS noch für die Simulation eines Raumbrandes angewendet. Diese Arbeit zeigt, dass GKS ein großes Potential für die Hochleistungssimulation von Feuer hat

    Kinetische Methoden zur numerischen Simulation von nichtlinearen Strömungen mit freien Oberflächen im Bau- und Umweltingenieurwesen

    Get PDF
    This thesis focuses on the numerical simulation of non-linear free surface flow problems. Different simulation kernels based on the Lattice Boltzmann method (LBM) have been developed or extended, implemented, and, after validation, applied to a number of applications in civil and environmental engineering. The LB model solves viscous and turbulent flows, essentially representing similar physics as Navier-Stokes or reduced shallow water models, but with specific solver advantages concerning data locality and parallel computing. The first part of this thesis deals with numerical simulations on high-performance GPU (graphics processing unit) hardware. Validations and applications of a reduced LB model for solving the shallow water equations are presented. The resulting GPU kernel has shown to be applicable to state-of-the-art benchmark problems, dealing with wave propagation and wave run-up. Subsequently, the GPU implementation of a 3D numerical wave tank for the simulation of various applications in civil engineering is presented. The second main target of this thesis is to develop and apply a novel model based on an enhanced representation and advection of the phase interface for the simulation of more complex and demanding free surface flow problems. A volume-of-fluid (VOF) approach in combination with a piecewise linear interface reconstruction (PLIC) has been coupled with the LBM. The resulting hybrid model has been successfully validated against various benchmark experiments. Even a breaking wave during shoaling on a slope, which is a demanding test case for VOF solvers, was successfully simulated. Apart from the model development and validation itself, a coupling to a rigid body engine for the simulation of FSI problems has been established. Finally, several techniques for the coupling to a potential flow solver are discussed and validated, in order to generate realistic wave profiles and for the efficient simulation of wave run-up and wave breaking.Die vorliegende Dissertation behandelt die numerische Simulation von nichtlinearen Strömungen mit freien Oberflächen. Dazu werden verschiedene Simulationskerne auf Basis der Gitter-Boltzmann-Methode (LBM) entwickelt, implementiert und nach ihrer Validierung auf zahlreiche Aufgabenstellungen im Bau- und Umweltingenieurwesen angewendet. Die LB-Methode wird verwendet, um viskose und turbulente Strömungen numerisch zu simulieren und bietet im Vergleich zu konventionellen Lösern deutliche Vorteile bezüglich Datenlokalität und parallelem Rechnen. Der erste Teil der Arbeit beschäftigt sich mit der Simulation von Strömungsproblemen auf High-Performance-GPU (Graphics Processing Unit) Hardware. Einleitend wird die Validierung und Anwendung eines LB-Modells für Flachwassergleichungen dargestellt. Im Anschluss wird eine GPU-Implementierung eines dreidimensionalen numerischen Wellenkanals für die Simulation turbulenter Wehrströmungen, Dammbruchszenarien, des Wellenschlages auf Pfahlbauwerke und anderer Anwendungen im Bauingenieurwesen präsentiert. Das zweite Ziel dieser Arbeit ist die Entwicklung und Anwendung eines neuartigen Modells für die Simulation von komplexeren Problemen mit freier Oberfläche unter Zuhilfenahme einer erweiterten Repräsentation der Phasengrenzfläche. Ein Volume-of-Fluid (VOF) Ansatz auf der Grundlage einer abschnittsweise linearen Interface-Rekonstruktion (PLIC) wird an die LBM gekoppelt. Das resultierende hybride Modell wird anhand verschiedener Benchmarks erfolgreich validiert. Im Anschluss wird eine Kopplung an einen Starrkörper-Löser realisiert, welche die Simulation von Problemstellungen aus dem Bereich der Fluid-Struktur-Interaktion ermöglicht. Abschließend werden Techniken zur Kopplung des hybriden Lösers an einen numerischen Wellenkanal auf Basis der Potentialströmungstheorie diskutiert und validiert, die die Erzeugung realistischer Wellenprofile und die effiziente Simulation von Wellenauflauf sowie Wellenbrechen ermöglichen

    Multi-objective optimisation methods applied to aircraft techno-economic and environmental issues

    No full text
    Engineering methods that couple multi-objective optimisation (MOO) techniques with high fidelity computational tools are expected to minimise the environmental impact of aviation while increasing the growth, with the potential to reveal innovative solutions. In order to mitigate the compromise between computational efficiency and fidelity, these methods can be accelerated by harnessing the computational efficiency of Graphic Processor Units (GPUs). The aim of the research is to develop a family of engineering methods to support research in aviation with respect to the environmental and economic aspects. In order to reveal the non-dominated trade-o_, also known as Pareto Front(PF), among conflicting objectives, a MOO algorithm, called Multi-Objective Tabu Search 2 (MOTS2), is developed, benchmarked relative to state-of-the-art methods and accelerated by using GPUs. A prototype fluid solver based on GPU is also developed, so as to simulate the mixing capability of a microreactor that could potentially be used in fuel-saving technologies in aviation. By using the aforementioned methods, optimal aircraft trajectories in terms of flight time, fuel consumption and emissions are generated, and alternative designs of a microreactor are suggested, so as to assess the trade-offs between pressure losses and the micro-mixing capability. As a key contribution to knowledge, with reference to competitive optimisers and previous cases, the capabilities of the proposed methodology are illustrated in prototype applications of aircraft trajectory optimisation (ATO) and micromixing optimisation with 2 and 3 objectives, under operational and geometrical constraints, respectively. In the short-term, ATO ought to be applied to existing aircraft. In the long-term, improving the micro-mixing capability of a microreactor is expected to enable the use of hydrogen-based fuel. This methodology is also benchmarked and assessed relative to state-of-the-art techniques in ATO and micro-mixing optimisation with known and unknown trade-offs, whereas the former could only optimise 2 objectives and the latter could not exploit the computational efficiency of GPUs. The impact of deploying on GPUs a micro-mixing _ow solver, which accelerates the generation of trade-off against a reference study, and MOTS2, which illustrates the scalability potential, is assessed. With regard to standard analytical function test cases and verification cases in MOO, MOTS2 can handle the multi-modality of the trade-o_ of ZDT4, which is a MOO benchmark function with many local optima that presents a challenge for a state-of-the-art genetic algorithm for ATO, called NSGAMO, based on case studies in the public domain. However, MOTS2 demonstrated worse performance on ZDT3, which is a MOO benchmark function with a discontinuous trade-o_, for which NSGAMO successfully captured the target PF. Comparing their overall performance, if the shape of the PF is known, MOTS2 should be preferred in problems with multi-modal trade-offs, whereas NSGAMO should be employed in discontinuous PFs. The shape of the trade-o_ between the objectives in airfoil shape optimisation, ATO and micro-mixing optimisation was continuous. The weakness of MOTS2 to sufficiently capture the discontinuous PF of ZDT3 was not critical in the studied examples … [cont.]

    Teaching and Learning of Fluid Mechanics

    Get PDF
    This book contains research on the pedagogical aspects of fluid mechanics and includes case studies, lesson plans, articles on historical aspects of fluid mechanics, and novel and interesting experiments and theoretical calculations that convey complex ideas in creative ways. The current volume showcases the teaching practices of fluid dynamicists from different disciplines, ranging from mathematics, physics, mechanical engineering, and environmental engineering to chemical engineering. The suitability of these articles ranges from early undergraduate to graduate level courses and can be read by faculty and students alike. We hope this collection will encourage cross-disciplinary pedagogical practices and give students a glimpse of the wide range of applications of fluid dynamics

    Étude de la propagation acoustique en milieu complexe par des réseaux de neurones profonds

    Get PDF
    Abstract : Predicting the propagation of aerocoustic noise is a challenging task in the presence of complex mean flows and geometry installation effects. The design of future quiet propul- sion systems requires tools that are able to perform many accurate evaluations with a low computational cost. Analytical models or hybrid numerical approaches have tradition- ally been employed for that purpose. However, such methods are typically constrained by simplifying hypotheses that are not easily relaxed. Thus, the main objective of this thesis is to develop and validate novel methods for the fast and accurate prediction of aeroacoustic propagation in complex mean flows and geometries. For that, data-driven deep convolutional neural networks acting as auto-regressive spatio-temporal predictors are considered. These surrogates are trained on high-fidelity data, generated by direct aeroacoustic numerical solvers. Such datasets are able to model complex flow phenomena, along with complex geometrical parameters. The neural network is designed to substitute the high-fidelity solver at a much lower computational cost once the training is finished, while predicting the time-domain acoustic propagation with sufficient accuracy. Three test cases of growing complexity are employed to test the approach, where the learned surrogate is compared to analytical and numerical solutions. The first one corresponds to the two-dimensional propagation of Gaussian pulses in closed domains, which allows understanding the fundamental behavior of the employed convolution neural networks. Second, the approach is extended in order to consider a variety of boundary conditions, from non-reflecting to curved reflecting obstacles, including the reflection and scattering of waves at obstacles. This allows the prediction of acoustic propagation in configurations closer to industrial problems. Finally, the effects of complex mean flows is investigated through a dataset of acoustic waves propagating inside sheared flows. These applications highlight the flexibility of the employed data-driven methods using convolutional neural networks. They allow a significant acceleration of the acoustic predictions, while keeping an adequate accuracy and being also able to correctly predict the acoustic propagation outside the range of the training data. For that, prior knowledge about the wave propa- gation physics is included during and after the neural network training phase, allowing an increased control over the error performed by the surrogate. Among this prior knowledge, the conservation of physics quantities and the correct treatment of boundary conditions are identified as key parameters that improve the surrogate predictions.Prédire la propagation du bruit aéroacoustique est une tâche difficile en présence d’écoulements moyens complexes et d’effets géométriques d’installation. La conception des futurs systèmes de propulsion silencieux appelle au développement d’outils capables d’effectuer de nombreuses évaluations avec une faible erreur et un faible coût de calcul. Traditionnellement, des modèles analytiques ou des approches numériques hybrides ont été utilisés à cette fin. Cependant, ces méthodes sont généralement contraintes par des hypothèses simplificatrices qui ne sont pas facilement assouplies. Ainsi, l’objectif principal de cette thèse est de développer et de valider de nouvelles méthodes pour la prédiction rapide et précise de la propagation aéroacoustique dans des écoulements moyens et des géométries complexes. Pour cela, des réseaux de neurones profonds à convolution, entraînés sur des données, et agissant comme prédicteurs spatio-temporels sont considérés. Ces modèles par substitution sont entraînés sur des données de haute fidélité, générées par des solveurs numériques aérocoustiques directs. De telles bases de données sont capables de modéliser des phénomènes d’écoulement, ainsi que des paramètres géométriques complexes. Le réseau de neurones est conçu pour remplacer le solveur haute fidélité à un coût de calcul beaucoup plus faible une fois la phase d’entraînement terminée, tout en prédisant la propagation acoustique dans le domaine temporel avec une précision suffisante. Trois cas de test, de complexité croissante, sont utilisés pour tester l’approche, où le substitut appris est comparé à des solutions analytiques et numériques. Le premier cas correspond à la propagation acoustique bidimensionnelle dans des domaines fermés, où des sources impulsionnelles Gaussiennes sont considérées. Ceci permet de comprendre le comportement fondamental des réseaux de neurones à convolution étudiés. Deuxièmement, l’approche est étendue afin de prendre en compte une variété de conditions aux limites, notamment des conditions aux limites non réfléchissantes et des obstacles réfléchissants de géométrie arbitraire, modélisant la réflexion et la diffusion des ondes acoustiques sur ces obstacles. Cela permet de prédire la propagation acoustique dans des configurations plus proches des problématiques industrielles. Enfin, les effets des écoulements moyens complexes sont étudiés à travers une base de données d’ondes acoustiques qui se propagent à l’intérieur d’écoulements cisaillés. Ces applications mettent en évidence la flexibilité des méthodes basées sur les données, utilisant des réseaux de neurones à convolution. Ils permettent une accélération significative des prédictions acoustiques, tout en gardant une précision adéquate et en étant également capables de prédire correctement la propagation acoustique en dehors de la gamme de paramètres des données d’apprentissage. Pour cela, des connaissances préalables sur la physique de propagation des ondes sont incluses pendant et après la phase d’apprentissage du réseau de neurones, permettant un contrôle accru sur l’erreur effectuée par le substitut. Parmi ces connaissances préalables, la conservation des grandeurs physiques et le traitement correct des conditions aux limites sont identifiés comme des paramètres clés qui améliorent les prédictions du modèle proposé
    • …
    corecore