16,077 research outputs found

    Dimensions of Copeland-Erdos Sequences

    Full text link
    The base-kk {\em Copeland-Erd\"os sequence} given by an infinite set AA of positive integers is the infinite sequence \CE_k(A) formed by concatenating the base-kk representations of the elements of AA in numerical order. This paper concerns the following four quantities. The {\em finite-state dimension} \dimfs (\CE_k(A)), a finite-state version of classical Hausdorff dimension introduced in 2001. The {\em finite-state strong dimension} \Dimfs(\CE_k(A)), a finite-state version of classical packing dimension introduced in 2004. This is a dual of \dimfs(\CE_k(A)) satisfying \Dimfs(\CE_k(A)) \geq \dimfs(\CE_k(A)). The {\em zeta-dimension} \Dimzeta(A), a kind of discrete fractal dimension discovered many times over the past few decades. The {\em lower zeta-dimension} \dimzeta(A), a dual of \Dimzeta(A) satisfying \dimzeta(A)\leq \Dimzeta(A). We prove the following. \dimfs(\CE_k(A))\geq \dimzeta(A). This extends the 1946 proof by Copeland and Erd\"os that the sequence \CE_k(\mathrm{PRIMES}) is Borel normal. \Dimfs(\CE_k(A))\geq \Dimzeta(A). These bounds are tight in the strong sense that these four quantities can have (simultaneously) any four values in [0,1][0,1] satisfying the four above-mentioned inequalities.Comment: 19 page

    Dimension of Scrambled Sets and The Dynamics of Tridiagonal Competitive-Cooperative System

    Get PDF
    One of the central problems in dynamical systems and differential equations is the analysis of the structures of invariant sets. The structures of the invariant sets of a dynamical system or differential equation reflect the complexity of the system or the equation. For example, any omega-limit set of a finite dimensional differential equation is a singleton implies that each bounded solution of the equation eventually stabilizes at some equilibrium state. In general, a dynamical system or differential equation can have very complicated invariant sets or so called chaotic sets. It is of great importance to classify those systems whose minimal invariant sets have certain simple structures and to characterize the complexity of chaotic type sets in general dynamical systems. In this thesis, we focus on the following two important problems: estimates for the dimension of chaotic sets and stable sets in a finite positive entropy system, and characterizations of minimal sets of nonautonomous tridiagonal competitive-cooperative systems

    Metric characterizations of spherical, and Euclidean buildings

    Full text link
    A building is a simplicial complex with a covering by Coxeter complexes (called apartments) satisfying certain combinatorial conditions. A building whose apartments are spherical (respectively Euclidean) Coxeter complexes has a natural piecewise spherical (respectively Euclidean) metric with nice geometric properties. We show that spherical and Euclidean buildings are completely characterized by some simple, geometric properties.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol5/paper17.abs.htm
    • …
    corecore