14,657 research outputs found

    A sieve M-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data

    Full text link
    In many semiparametric models that are parameterized by two types of parameters---a Euclidean parameter of interest and an infinite-dimensional nuisance parameter---the two parameters are bundled together, that is, the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton--Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided.Comment: Published in at http://dx.doi.org/10.1214/11-AOS934 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Root optimization of polynomials in the number field sieve

    Get PDF
    The general number field sieve (GNFS) is the most efficient algorithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the chosen polynomials in polynomial selection can be modelled in terms of size and root properties. In this paper, we describe some algorithms for selecting polynomials with very good root properties.Comment: 16 pages, 18 reference

    New practical algorithms for the approximate shortest lattice vector

    Get PDF
    We present a practical algorithm that given an LLL-reduced lattice basis of dimension n, runs in time O(n3(k=6)k=4+n4) and approximates the length of the shortest, non-zero lattice vector to within a factor (k=6)n=(2k). This result is based on reasonable heuristics. Compared to previous practical algorithms the new method reduces the proven approximation factor achievable in a given time to less than its fourthth root. We also present a sieve algorithm inspired by Ajtai, Kumar, Sivakumar [AKS01]

    MCMC methods for functions modifying old algorithms to make\ud them faster

    Get PDF
    Many problems arising in applications result in the need\ud to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the unknown function. We describe an approach to modifying a whole range of MCMC methods which ensures that their speed of convergence is robust under mesh refinement. In the applications of interest the data is often sparse and the prior specification is an essential part of the overall modeling strategy. The algorithmic approach that we describe is applicable whenever the desired probability measure has density with respect to a Gaussian process or Gaussian random field prior, and to some useful non-Gaussian priors constructed through random truncation. Applications are shown in density estimation, data assimilation in fluid mechanics, subsurface geophysics and image registration. The key design principle is to formulate the MCMC method for functions. This leads to algorithms which can be implemented via minor modification of existing algorithms, yet which show enormous speed-up on a wide range of applied problems

    Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes

    Full text link
    We study practically efficient methods for performing combinatorial group testing. We present efficient non-adaptive and two-stage combinatorial group testing algorithms, which identify the at most d items out of a given set of n items that are defective, using fewer tests for all practical set sizes. For example, our two-stage algorithm matches the information theoretic lower bound for the number of tests in a combinatorial group testing regimen.Comment: 18 pages; an abbreviated version of this paper is to appear at the 9th Worksh. Algorithms and Data Structure

    Faster tuple lattice sieving using spherical locality-sensitive filters

    Get PDF
    To overcome the large memory requirement of classical lattice sieving algorithms for solving hard lattice problems, Bai-Laarhoven-Stehl\'{e} [ANTS 2016] studied tuple lattice sieving, where tuples instead of pairs of lattice vectors are combined to form shorter vectors. Herold-Kirshanova [PKC 2017] recently improved upon their results for arbitrary tuple sizes, for example showing that a triple sieve can solve the shortest vector problem (SVP) in dimension dd in time 20.3717d+o(d)2^{0.3717d + o(d)}, using a technique similar to locality-sensitive hashing for finding nearest neighbors. In this work, we generalize the spherical locality-sensitive filters of Becker-Ducas-Gama-Laarhoven [SODA 2016] to obtain space-time tradeoffs for near neighbor searching on dense data sets, and we apply these techniques to tuple lattice sieving to obtain even better time complexities. For instance, our triple sieve heuristically solves SVP in time 20.3588d+o(d)2^{0.3588d + o(d)}. For practical sieves based on Micciancio-Voulgaris' GaussSieve [SODA 2010], this shows that a triple sieve uses less space and less time than the current best near-linear space double sieve.Comment: 12 pages + references, 2 figures. Subsumed/merged into Cryptology ePrint Archive 2017/228, available at https://ia.cr/2017/122
    • …
    corecore