243 research outputs found

    Advanced Fault-Tolerant Control of Induction-Motor Drives for EV/HEV Traction Applications: From Conventional to Modern and Intelligent Control Techniques

    No full text
    International audienceThis paper describes active fault-tolerant control systems for a high-performance induction-motor drive that propels an electrical vehicle (EV) or a hybrid one (HEV). The proposed systems adaptively reorganize themselves in the event of sensor loss or sensor recovery to sustain the best control performance, given the complement of remaining sensors. Moreover, the developed systems take into account the controller-transition smoothness, in terms of speed and torque transients. The two proposed fault-tolerant control strategies have been simulated on a 4-kW induction-motor drive, and speed and torque responses have been carried to evaluate the consistency and the performance of the proposed approaches. Simulation results, in terms of speed and torque responses, show the global effectiveness of the proposed approaches, particularly the one based on modern and intelligent control techniques in terms of speed and torque smoothness

    A Control Reconfiguration Strategy for Post-Sensor FTC in Induction Motor-Based EVs

    No full text
    International audienceThis paper deals with experimental validation of a reconfiguration strategy for sensor fault-tolerant control (FTC) in induction-motor-based electric vehicles (EVs). The proposed active FTC system is illustrated using two control techniques: indirect field-oriented control (IFOC) in the case of healthy sensors and speed control with slip regulation (SCSR) in the case of failed current sensors. The main objective behind the reconfiguration strategy is to achieve a short and smooth transition when switching from a controller using a healthy sensor to another sensorless controller in the case of a sensor failure. The proposed FTC approach performances are experimentally evaluated on a 7.5-kW induction motor drive

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Sensorless Control of IM Based on Stator-Voltage MRAS for Limp-Home EV Applications

    Get PDF

    PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control

    No full text
    International audienceThis paper proposes a fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. In a vehicle context, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed. Two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to assess the FTC scheme performance and effectiveness

    An Improved Fault-Tolerant Control Scheme for PWM Inverter-Fed Induction Motor-Based EVs

    No full text
    International audienceThis paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    A Novel Method for Vector Control of Faulty Three-Phase IM Drives Based on FOC Method

    Get PDF
    This paper proposes a novel method for vector control of faulty three-phase Induction Motor (IM) drives based on Field-Oriented Control (FOC) method. The performance characteristics of the presented drive system are investigated at healthy and open-phase fault conditions. The simulation of the case study is carried out by using the Matlab/M-File software for a star-connected three-phase IM. The results show the better performance of the proposed drive system especially in reduction of motor speed and torque oscillations during open-phase fault operating

    An Advanced Three-Level Active Neutral-Point-Clamped Converter With Improved Fault-Tolerant Capabilities

    Get PDF
    A resilient fault-tolerant silicon carbide (SiC) three-level power converter topology is introduced based on the traditional active neutral-point-clamped converter. This novel converter topology incorporates a redundant leg to provide fault tolerance during switch open-circuit faults and short-circuit faults. Additionally, the topology is capable of maintaining full output voltage and maximum modulation index in the presence of switch open and short-circuit faults. Moreover, the redundant leg can be employed to share load current with other phase legs to balance thermal stress among semiconductor switches during normal operation. A 25-kW prototype of the novel topology was designed and constructed utilizing 1.2-kV SiC metal-oxide-semiconductor field-effect transistors. Experimental results confirm the anticipated theoretical capabilities of this new three-level converter topology

    Sensorless control for limp-home mode of EV applications

    Get PDF
    PhD ThesisOver the past decade research into electric vehicles’ (EVs) safety, reliability and availability has become a hot topic and has attracted a lot of attention in the literature. Inevitably these key areas require further study and improvement. One of the challenges EVs face is speed/position sensor failure due to vibration and harsh environments. Wires connecting the sensor to the motor controller have a high likelihood of breakage. Loss of signals from the speed/position sensor will bring the EV to halt mode. Speed sensor failure at a busy roundabout or on a high speed motorway can have serious consequences and put the lives of drivers and passengers in great danger. This thesis aims to tackle the aforementioned issues by proposing several novel sensorless schemes based on Model Reference Adaptive Systems (MRAS) suitable for limp-home mode of EV applications. The estimated speed from these schemes is used for the rotor flux position estimation. The estimated rotor flux position is employed for sensorless torque-controlled drive (TCD) based on indirect rotor field oriented control (IRFOC). The capabilities of the proposed schemes have been evaluated and compared to the conventional back-Electromotive Force MRAS (back-EMF MRAS) scheme using simulation environment and a test bench setup. The new schemes have also been tested on electric golf buggies. The results presented for the proposed schemes show that utilising these schemes provide a reliable and smooth sensorless operation during vehicle test-drive starting from standstill and over a wide range of speeds, including the field weakening region. Employing these new schemes for sensorless TCD in limp-home mode of EV applications increases safety, reliability and availability of EVs
    • 

    corecore