35,801 research outputs found

    On bipartite graphs of defect at most 4

    Get PDF
    We consider the bipartite version of the degree/diameter problem, namely, given natural numbers {\Delta} \geq 2 and D \geq 2, find the maximum number Nb({\Delta},D) of vertices in a bipartite graph of maximum degree {\Delta} and diameter D. In this context, the Moore bipartite bound Mb({\Delta},D) represents an upper bound for Nb({\Delta},D). Bipartite graphs of maximum degree {\Delta}, diameter D and order Mb({\Delta},D), called Moore bipartite graphs, have turned out to be very rare. Therefore, it is very interesting to investigate bipartite graphs of maximum degree {\Delta} \geq 2, diameter D \geq 2 and order Mb({\Delta},D) - \epsilon with small \epsilon > 0, that is, bipartite ({\Delta},D,-\epsilon)-graphs. The parameter \epsilon is called the defect. This paper considers bipartite graphs of defect at most 4, and presents all the known such graphs. Bipartite graphs of defect 2 have been studied in the past; if {\Delta} \geq 3 and D \geq 3, they may only exist for D = 3. However, when \epsilon > 2 bipartite ({\Delta},D,-\epsilon)-graphs represent a wide unexplored area. The main results of the paper include several necessary conditions for the existence of bipartite (Δ,d,−4)(\Delta,d,-4)-graphs; the complete catalogue of bipartite (3,D,-\epsilon)-graphs with D \geq 2 and 0 \leq \epsilon \leq 4; the complete catalogue of bipartite ({\Delta},D,-\epsilon)-graphs with {\Delta} \geq 2, 5 \leq D \leq 187 (D /= 6) and 0 \leq \epsilon \leq 4; and a non-existence proof of all bipartite ({\Delta},D,-4)-graphs with {\Delta} \geq 3 and odd D \geq 7. Finally, we conjecture that there are no bipartite graphs of defect 4 for {\Delta} \geq 3 and D \geq 5, and comment on some implications of our results for upper bounds of Nb({\Delta},D).Comment: 25 pages, 14 Postscript figure

    On graphs of defect at most 2

    Get PDF
    In this paper we consider the degree/diameter problem, namely, given natural numbers {\Delta} \geq 2 and D \geq 1, find the maximum number N({\Delta},D) of vertices in a graph of maximum degree {\Delta} and diameter D. In this context, the Moore bound M({\Delta},D) represents an upper bound for N({\Delta},D). Graphs of maximum degree {\Delta}, diameter D and order M({\Delta},D), called Moore graphs, turned out to be very rare. Therefore, it is very interesting to investigate graphs of maximum degree {\Delta} \geq 2, diameter D \geq 1 and order M({\Delta},D) - {\epsilon} with small {\epsilon} > 0, that is, ({\Delta},D,-{\epsilon})-graphs. The parameter {\epsilon} is called the defect. Graphs of defect 1 exist only for {\Delta} = 2. When {\epsilon} > 1, ({\Delta},D,-{\epsilon})-graphs represent a wide unexplored area. This paper focuses on graphs of defect 2. Building on the approaches developed in [11] we obtain several new important results on this family of graphs. First, we prove that the girth of a ({\Delta},D,-2)-graph with {\Delta} \geq 4 and D \geq 4 is 2D. Second, and most important, we prove the non-existence of ({\Delta},D,-2)-graphs with even {\Delta} \geq 4 and D \geq 4; this outcome, together with a proof on the non-existence of (4, 3,-2)-graphs (also provided in the paper), allows us to complete the catalogue of (4,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2. Such a catalogue is only the second census of ({\Delta},D,-2)-graphs known at present, the first being the one of (3,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2 [14]. Other results of this paper include necessary conditions for the existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 4, and the non-existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 5 such that {\Delta} \equiv 0, 2 (mod D).Comment: 22 pages, 11 Postscript figure

    Algorithms and Lower Bounds for Cycles and Walks: Small Space and Sparse Graphs

    Get PDF

    Maxima of the Q-index: forbidden 4-cycle and 5-cycle

    Full text link
    This paper gives tight upper bounds on the largest eigenvalue q(G) of the signless Laplacian of graphs with no 4-cycle and no 5-cycle. If n is odd, let F_{n} be the friendship graph of order n; if n is even, let F_{n} be F_{n-1} with an edge hanged to its center. It is shown that if G is a graph of order n, with no 4-cycle, then q(G)<q(F_{n}), unless G=F_{n}. Let S_{n,k} be the join of a complete graph of order k and an independent set of order n-k. It is shown that if G is a graph of order n, with no 5-cycle, then q(G)<q(S_{n,2}), unless G=S_{n,k}. It is shown that these results are significant in spectral extremal graph problems. Two conjectures are formulated for the maximum q(G) of graphs with forbidden cycles.Comment: 12 page
    • …
    corecore