901 research outputs found

    Structural Restricted Boltzmann Machine for image denoising and classification

    Full text link
    Restricted Boltzmann Machines are generative models that consist of a layer of hidden variables connected to another layer of visible units, and they are used to model the distribution over visible variables. In order to gain a higher representability power, many hidden units are commonly used, which, in combination with a large number of visible units, leads to a high number of trainable parameters. In this work we introduce the Structural Restricted Boltzmann Machine model, which taking advantage of the structure of the data in hand, constrains connections of hidden units to subsets of visible units in order to reduce significantly the number of trainable parameters, without compromising performance. As a possible area of application, we focus on image modelling. Based on the nature of the images, the structure of the connections is given in terms of spatial neighbourhoods over the pixels of the image that constitute the visible variables of the model. We conduct extensive experiments on various image domains. Image denoising is evaluated with corrupted images from the MNIST dataset. The generative power of our models is compared to vanilla RBMs, as well as their classification performance, which is assessed with five different image domains. Results show that our proposed model has a faster and more stable training, while also obtaining better results compared to an RBM with no constrained connections between its visible and hidden units

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear
    • …
    corecore