400 research outputs found

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad

    A scalable algorithm for learning a Mahalanobis distance metric

    Get PDF
    A distance metric that can accurately re°ect the intrinsic characteristics of data is critical for visual recognition tasks. An eÂŪective solution to deÂŊning such a metric is to learn it from a set of training sam- ples. In this work, we propose a fast and scalable algorithm to learn a Ma- halanobis distance. By employing the principle of margin maximization to secure better generalization performances, this algorithm formulates the metric learning as a convex optimization problem with a positive semideÂŊnite (psd) matrix variable. Based on an important theorem that a psd matrix with trace of one can always be represented as a convex combination of multiple rank-one matrices, our algorithm employs a dif- ferentiable loss function and solves the above convex optimization with gradient descent methods. This algorithm not only naturally maintains the psd requirement of the matrix variable that is essential for met- ric learning, but also signiÂŊcantly cuts down computational overhead, making it much more eÂącient with the increasing dimensions of fea- ture vectors. Experimental study on benchmark data sets indicates that, compared with the existing metric learning algorithms, our algorithm can achieve higher classiÂŊcation accuracy with much less computational load

    Fuzzy Support Vector Machine Using Function Linear Membership and Exponential with Mahanalobis Distance

    Get PDF
    Support vector machine (SVM) is one of effective biner classification technic with structural risk minimization (SRM) principle. SVM method is known as one of successful method in classification technic. But the real-life data problem lies in the occurrence of noise and outlier. Noise will create confusion for the SVM when the data is being processed. On this research, SVM is being developed by adding its fuzzy membership function to lessen the noise and outlier effect in data when trying to figure out the hyperplane solution. Distance calculation is also being considered while determining fuzzy value because it is a basic thing in determining the proximity between data elements, which in general is built depending on the distance between the point into the real class mass center. Fuzzy support vector machine (FSVM) uses Mahalanobis distances with the goal of finding the best hyperplane by separating data between defined classes. The data used will be going over trial for several dividing partition percentage transforming into training set and testing set. Although theoretically FSVM is able to overcome noise and outliers, the results show that the accuracy of FSVM, namely 0.017170689 and 0.018668421, is lower than the accuracy of the classical SVM method, which is 0.018838348. The existence of fuzzy membership function is extremely influential in deciding the best hyperplane. Based on that, determining the correct fuzzy membership is critical in FSVM problem

    A Survey on Hybrid Techniques Using SVM

    Get PDF
    Support Vector Machines (SVM) with linear or nonlinear kernels has become one of the most promising learning algorithms for classification as well as for regression. All the multilayer perceptron (MLP),Radial Basic Function(RBF) and Learning Polynomials are also worked efficiently with SVM. SVM is basically derived from statistical Learning Theory and it is very powerful statistical tool. The basic principal for the SVM is structural risk minimization and closely related to regularization theory. SVM is a group of supervised learning techniques or methods, which is used to do for classification or regression. In this paper discussed the importance of Support Vector Machines in various areas. This paper discussing the efficiency of SVM with the combination of other classification techniques

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Classification technique for minority class on imbalanced dataset with data partitioning method

    Get PDF

    A Comparative Study of Different Template Matching Techniques for Twin Iris Recognition

    Get PDF
    Biometric recognition is gaining attention as most of the organization is seeking for a more secure verification method for user access and other security application. There are a lot of biometric systems that exist which are iris, hand geometry and fingerprint recognition. In biometric system, iris recognition is marked as one of the most reliable and accurate biometric in term of identification. However, the performance of iris recognition is still doubted whether the iris recognition can generate higher accuracy when involving twin iris data. So, specific research by using twin data only needs to be done to measure the performance of recognition. Besides that, a comparative study is carried out using two template matching technique which are Hamming Distance and Euclidean Distance to measure the dissimilarity between the two iris template. From the comparison of the technique, better template matching technique also can be determined. The experimental result showed that iris recognition can distinguish twin as it can distinguish two different, unrelated people as the result obtained showed the good separation between intra and interclass and both techniques managed to obtain high accuracy. From the comparison of template matching technique, Hamming Distance is chosen as better technique with low False Rejection Rate, low False Acceptance Rate and high Total Success Rate with the value of 2.5%, 8.75% and 96.48% respectively

    Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy

    Full text link
    Aim: To detect pathological brain conditions early is a core procedure for patients so as to have enough time for treatment. Traditional manual detection is either cumbersome, or expensive, or time-consuming. We aim to offer a system that can automatically identify pathological brain images in this paper.Method: We propose a novel image feature, viz., Fractional Fourier Entropy (FRFE), which is based on the combination of Fractional Fourier Transform(FRFT) and Shannon entropy. Afterwards, the Welch’s t-test (WTT) and Mahalanobis distance (MD) were harnessed to select distinguishing features. Finally, we introduced an advanced classifier: twin support vector machine (TSVM). Results: A 10 x K-fold stratified cross validation test showed that this proposed “FRFE +WTT + TSVM” yielded an accuracy of 100.00%, 100.00%, and 99.57% on datasets that contained 66, 160, and 255 brain images, respectively. Conclusions: The proposed “FRFE +WTT + TSVM” method is superior to 20 state-of-the-art methods
    • â€Ķ
    corecore