339 research outputs found

    Asymptotics of lattice walks via analytic combinatorics in several variables

    Get PDF
    We consider the enumeration of walks on the two dimensional non-negative integer lattice with short steps. Up to isomorphism there are 79 unique two dimensional models to consider, and previous work in this area has used the kernel method, along with a rigorous computer algebra approach, to show that 23 of the 79 models admit D-finite generating functions. In 2009, Bostan and Kauers used Pad\'e-Hermite approximants to guess differential equations which these 23 generating functions satisfy, in the process guessing asymptotics of their coefficient sequences. In this article we provide, for the first time, a complete rigorous verification of these guesses. Our technique is to use the kernel method to express 19 of the 23 generating functions as diagonals of tri-variate rational functions and apply the methods of analytic combinatorics in several variables (the remaining 4 models have algebraic generating functions and can thus be handled by univariate techniques). This approach also shows the link between combinatorial properties of the models and features of its asymptotics such as asymptotic and polynomial growth factors. In addition, we give expressions for the number of walks returning to the x-axis, the y-axis, and the origin, proving recently conjectured asymptotics of Bostan, Chyzak, van Hoeij, Kauers, and Pech.Comment: 10 pages, 3 tables, as accepted to proceedings of FPSAC 2016 (without conference formatting

    Positivity of rational functions and their diagonals

    Get PDF
    The problem to decide whether a given rational function in several variables is positive, in the sense that all its Taylor coefficients are positive, goes back to Szeg\H{o} as well as Askey and Gasper, who inspired more recent work. It is well known that the diagonal coefficients of rational functions are DD-finite. This note is motivated by the observation that, for several of the rational functions whose positivity has received special attention, the diagonal terms in fact have arithmetic significance and arise from differential equations that have modular parametrization. In each of these cases, this allows us to conclude that the diagonal is positive. Further inspired by a result of Gillis, Reznick and Zeilberger, we investigate the relation between positivity of a rational function and the positivity of its diagonal.Comment: 16 page

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    The diameter of random Cayley digraphs of given degree

    Full text link
    We consider random Cayley digraphs of order nn with uniformly distributed generating set of size kk. Specifically, we are interested in the asymptotics of the probability such a Cayley digraph has diameter two as nn\to\infty and k=f(n)k=f(n). We find a sharp phase transition from 0 to 1 at around k=nlognk = \sqrt{n \log n}. In particular, if f(n)f(n) is asymptotically linear in nn, the probability converges exponentially fast to 1.Comment: 11 page
    corecore