324 research outputs found

    The Route Towards The Shawshank Redemption: Mapping Set-jetting with Social Media

    Get PDF
    With the development of the Web 2.0, more and more geospatial data are generated via social media. This segment of what is now called “big data” can be used to further study human spatial behaviors and practices. This project aims to explore different ways of extracting geodata from social media in order to contribute to the growing body of literature dedicated to studying the contribution of the geoweb to human geography. More specifically, this project focuses on the potential of social media to explore a growing tourism phenomenon: set-jetting. Set-jetting refers to the activity whereby people travel to visit shooting locations that appear in movies. The case study presented here focuses on the Mansfield Reformatory (Ohio, USA), which was used as the shooting location for the film The Shawshank Redemption (Dir. Frank Darabont, 1994). Through the analysis of georeferenced data mined from Twitter, Flickr, and Tripadvisor, this project presents and discusses the differences and similarities between the use of these three platforms by set-jetters to share and access geodata associated with an alternative tourist destination. The results demonstrate the complementarity of each of these applications to studying set-jetting at different scales. While Twitter appears more appropriate to study this phenomenon at a global scale, Tripadvisor provides more relevant information at the regional level and Flickr can be mobilized to study the movements of set-jetters at a very local scale. Overall, beyond the methodological and technological issues associated with the use of these social media in studying the geography of set-jetting, these applications offer new perspectives for the tourism industry and open new research areas for academics as well

    A Big Data Analytics Method for Tourist Behaviour Analysis

    Get PDF
    © 2016 Elsevier B.V. Big data generated across social media sites have created numerous opportunities for bringing more insights to decision-makers. Few studies on big data analytics, however, have demonstrated the support for strategic decision-making. Moreover, a formal method for analysing social media-generated big data for decision support is yet to be developed, particularly in the tourism sector. Using a design science research approach, this study aims to design and evaluate a ‘big data analytics’ method to support strategic decision-making in tourism destination management. Using geotagged photos uploaded by tourists to the photo-sharing social media site, Flickr, the applicability of the method in assisting destination management organisations to analyse and predict tourist behavioural patterns at specific destinations is shown, using Melbourne, Australia, as a representative case. Utility was confirmed using both another destination and directly with stakeholder audiences. The developed artefact demonstrates a method for analysing unstructured big data to enhance strategic decision making within a real problem domain. The proposed method is generic, and its applicability to other big data streams is discussed

    A Big Data Analytics Method for Tourist Behaviour Analysis

    Get PDF
    © 2016 Elsevier B.V. Big data generated across social media sites have created numerous opportunities for bringing more insights to decision-makers. Few studies on big data analytics, however, have demonstrated the support for strategic decision-making. Moreover, a formal method for analysing social media-generated big data for decision support is yet to be developed, particularly in the tourism sector. Using a design science research approach, this study aims to design and evaluate a ‘big data analytics’ method to support strategic decision-making in tourism destination management. Using geotagged photos uploaded by tourists to the photo-sharing social media site, Flickr, the applicability of the method in assisting destination management organisations to analyse and predict tourist behavioural patterns at specific destinations is shown, using Melbourne, Australia, as a representative case. Utility was confirmed using both another destination and directly with stakeholder audiences. The developed artefact demonstrates a method for analysing unstructured big data to enhance strategic decision making within a real problem domain. The proposed method is generic, and its applicability to other big data streams is discussed

    Analyzing Destination Choices of Tourists and Residents from Location Based Social Media Data

    Get PDF
    Ubiquitous uses of social media platforms in smartphones have created an opportunity to gather digital traces of individual activities at a large scale. Traditional travel surveys fall short in collecting longitudinal travel behavior data for a large number of people in a cost effective way, especially for the transient population such as tourists. This study presents an innovating methodological framework, using machine learning and econometric approaches, to gather and analyze location-based social media (LBSM) data to understand individual destination choices. First, using Twitter\u27s search interface, we have collected Twitter posts of nearly 156,000 users for the state of Florida. We have adopted several filtering techniques to create a reliable sample from noisy Twitter data. An ensemble classification technique is proposed to classify tourists and residents from user coordinates. The performance of the proposed classifier has been validated using manually labeled data and compared against the state-of-the-art classification methods. Second, using different clustering methods, we have analyzed the spatial distributions of destination choices of tourists and residents. The clusters from tourist destinations revealed most popular tourist spots including emerging tourist attractions in Florida. Third, to predict a tourist\u27s next destination type, we have estimated a Conditional Random Field (CRF) model with reasonable accuracy. Fourth, to analyze resident destination choice behavior, this study proposes an extensive data merging operation among the collected Twitter data and different geographic database from state level data libraries. We have estimated a Panel Latent Segmentation Multinomial Logit (PLSMNL) model to find the characteristics affecting individual destination choices. The proposed PLSMNL model is found to better explain the effects of variables on destination choices compared to trip-specific Multinomial Logit Models. The findings of this study show the potential of LBSM data in future transportation and planning studies where collecting individual activity data is expensive

    A Location Analytics Method for the Utilisation of Geotagged Photos in Travel Marketing Decision-Making

    Get PDF
    Location analytics offers statistical analysis of any geo- or spatial data concerning user location. Such analytics can produce useful insights into the attractions of interest to travellers or visitation patterns of a demographic group. Based on these insights, strategic decision-making by travel marketing agents, such as travel package design, may be improved. In this paper, we develop and evaluate an original method of location analytics to analyse travellers' social media data for improving managerial decision support. The method proposes an architectural framework that combines emerging pattern data mining techniques with image processing to identify and process appropriate data content. The design artefact is evaluated through a focus group and a detailed case study of Australian outbound travellers. The proposed method is generic, and can be applied to other specific locations or demographics to provide analytical outcomes useful for strategic decision support

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    "This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research.
    corecore