71 research outputs found

    Coping with the inheritance of COVID-19: the role of new interactive technologies to enhance user experience in different contexts of use

    Get PDF
    The COVID-19 pandemic has upset the habits of people and various sectors of society, including training, entertainment, and retail. These sectors have been forced to adapt to abnormal situations such as social distancing, remote work, and online entertainment. The pandemic has significantly transformed the training field, leading to the closure of many in-person instruction centers and a shift toward online education courses, which can be less effective. In addition, the entertainment industry has been heavily transformed by social distancing, resulting in the cancellation of many live events and the closure of several cinemas. This has increased demand for online entertainment options, such as streaming services and virtual events. Finally, the restrictions imposed by the COVID-19 pandemic substantially impacted physical stores and fairs, suspending exhibitions for more than two years. This has further driven consumers to rely on e-commerce to fulfill their purchasing and companies to increasingly take advantage of new technologies such as augmented reality. In this suddenly disrupted scenario, new technologies have the potential to fill the gap generated by the pandemic, functioning as an interactive bridge to connect people. This Ph.D. thesis explored the potential of interactive technologies in mitigating the challenges posed by the COVID-19 pandemic in various contexts of use in the above-mentioned areas. Specifically, three lines of research were investigated by conducting different studies using a mixed approach in the Human-Computer Interaction field. The first research line focused on the study of immersive virtual reality training, with a particular interest in flood emergencies, a growing phenomenon. The goal was to implement engaging and efficient training for citizens that live near rivers through a human-centric design approach. The second line of research explored innovative ways to improve social interaction and collaboration in the entertainment sector, highlighting guidelines for the design of shared streaming experiences. In particular, three different communication modalities were studied during group viewing of an interactive film on a streaming platform. Finally, the third research line focused on the retail sector. On the one hand, the focus consisted of understanding which aspects of the 3D web and AR technology are helpful for supporting small businesses and trade fairs. On the other hand, the focus was to investigate how to support consumers during an AR shopping experience when interacting with 3D virtual products of different sizes. Overall, this project provides suggestions and guidelines for designing systems that can both increasingly connect people at a distance and offer new hybrid worlds. In addition, this project expands state-of-the-art related to interactive technologies and offers generalizable results outside the crisis created by COVID-19. These technologies, now increasingly integrated into everyday life, can be a tool for empowerment and resilience, improving people's lives.The COVID-19 pandemic has upset the habits of people and various sectors of society, including training, entertainment, and retail. These sectors have been forced to adapt to abnormal situations such as social distancing, remote work, and online entertainment. The pandemic has significantly transformed the training field, leading to the closure of many in-person instruction centers and a shift toward online education courses, which can be less effective. In addition, the entertainment industry has been heavily transformed by social distancing, resulting in the cancellation of many live events and the closure of several cinemas. This has increased demand for online entertainment options, such as streaming services and virtual events. Finally, the restrictions imposed by the COVID-19 pandemic substantially impacted physical stores and fairs, suspending exhibitions for more than two years. This has further driven consumers to rely on e-commerce to fulfill their purchasing and companies to increasingly take advantage of new technologies such as augmented reality. In this suddenly disrupted scenario, new technologies have the potential to fill the gap generated by the pandemic, functioning as an interactive bridge to connect people. This Ph.D. thesis explored the potential of interactive technologies in mitigating the challenges posed by the COVID-19 pandemic in various contexts of use in the above-mentioned areas. Specifically, three lines of research were investigated by conducting different studies using a mixed approach in the Human-Computer Interaction field. The first research line focused on the study of immersive virtual reality training, with a particular interest in flood emergencies, a growing phenomenon. The goal was to implement engaging and efficient training for citizens that live near rivers through a human-centric design approach. The second line of research explored innovative ways to improve social interaction and collaboration in the entertainment sector, highlighting guidelines for the design of shared streaming experiences. In particular, three different communication modalities were studied during group viewing of an interactive film on a streaming platform. Finally, the third research line focused on the retail sector. On the one hand, the focus consisted of understanding which aspects of the 3D web and AR technology are helpful for supporting small businesses and trade fairs. On the other hand, the focus was to investigate how to support consumers during an AR shopping experience when interacting with 3D virtual products of different sizes. Overall, this project provides suggestions and guidelines for designing systems that can both increasingly connect people at a distance and offer new hybrid worlds. In addition, this project expands state-of-the-art related to interactive technologies and offers generalizable results outside the crisis created by COVID-19. These technologies, now increasingly integrated into everyday life, can be a tool for empowerment and resilience, improving people's lives

    Advancing the use of geographic information systems, numerical and physical models for the planning of managed aquifer recharge schemes

    Get PDF
    Global change is a major threat to local groundwater resources. Climate change and population growth are factors that directly or indirectly augment the increasing uptake of groundwater resources. To outbalance the pressure on aquifers, managed aquifer recharge (MAR) schemes are increasingly being implemented. They enable the subsurface storage of surplus water for times of high demand. The complexity of MAR schemes makes their planning and implementation multifaceted and requires a comprehensive assessment of the local hydrogeological and hydrogeochemical conditions. Despite the fact that MAR is a widely used technique, its implementation is not well regulated and comprehensive planning and design guidelines are rare. The use of supporting tools, such as numerical and physical models or geographic information systems (GIS), is rising for MAR planning but their scope and requirements for application are rarely reflected in the available MAR guidelines. To depict the application potential and the advantages and disadvantages of the tools for surface infiltration MAR planning, this thesis comprises reviews on the past use of the tools as well as suggestions to improve their applicability for MAR planning. GIS is not mentioned by most MAR guidelines as a planning tool even though it is increasingly being used for MAR mapping. Through a review of GIS-based MAR suitability studies, this thesis shows that the MAR mapping process could be standardized by using the often-applied approach of constraint mapping, suitability mapping by using pairwise comparison for weight assignment and weighted linear combination as a decision rule, and a subsequent sensitivity analysis. Standardizing the methodology would increase the reliability and comparability of MAR maps due to the common methodological approach. Thus, the proposed standard methodology was incorporated into a web GIS that simplifies MAR mapping through a pre-defined workflow. Numerical models are widely used for the assessment of MAR schemes and are included into some MAR planning guidelines. However, only a few studies were found that utilized vadose zone models for the planning and design of MAR schemes. In this thesis, a review and a subsequent case study highlight that numerical modelling has many assets, such as monitoring network design or infiltration scenario planning, that make its utilization during the MAR planning phase worthwhile. Consequently, this study advocates the use of vadose zone models for MAR planning by showing their potential areas of application as well as their uncertainties that need to be regarded carefully during modelling. Physical models used for MAR planning are typically field or pilot sites, as some MAR legislation requests pilot sites as part of the preliminary assessment. Laboratory experiments are used less often and are mostly restricted to the analysis of very specific issues, such as clogging. This thesis takes on the issue of scaling laboratory results to the field scale by comparing results from three physical models of different scales and dimensionality. The results indicate that preferential flow paths, air entrapment and boundary influence limit the quantitative validity of laboratory experiments. The use of 3D tanks instead of 1D soil columns and the application of statistical indicators are means to increase the representativeness of laboratory measurements. Nevertheless, physical models have the potential to improve MAR planning in terms of detailed process assessment, scenario and sensitivity analyses. All tools discussed in this thesis have their merits for MAR scheme planning and should be advocated better in MAR guidelines by depicting their application potential, advantages and disadvantages. The information accumulated in this thesis is a step towards an advanced use of supporting tools for the planning and design of MAR schemes.:1 Introduction 1.1 Motivation 1.2 Objectives 1.3 Structure of the thesis 2 Status quo of the planning process of MAR schemes 2.1 Guidance documents on general MAR planning 2.2 Application of GIS, numerical and physical models for MAR planning 2.3 Planning of surface infiltration schemes 3 Using GIS for the planning of MAR schemes 3.1 Implications from GIS-MCDA studies for MAR mapping 3.2 Development of web tools for MAR suitability mapping 4 Using numerical models for the planning of MAR schemes 4.1 Review on the use of numerical models for the design and optimization of MAR schemes 4.2 Planning a small-scale MAR scheme through vadose zone modelling 5 Using physical models for the planning of MAR schemes 5.1 Design of the experimental study 5.2 Comparison of three different physical models for MAR planning 6 Discussion and research perspectives 7 Bibliography 8 AppendixDer globale Wandel stellt eine große Bedrohung für die lokalen Grundwasserressourcen dar. Klimawandel und Bevölkerungswachstum sind Faktoren, die, direkt oder indirekt, die zunehmende Nutzung von Grundwasserressourcen verstärken. Um diesen Druck auf die Grundwasserleiter auszugleichen, werden verstärkt Maßnahmen zur gezielten Grundwasserneubildung (managed aquifer recharge = MAR) durchgeführt. Dies ermöglicht die unterirdische Speicherung von überschüssigem Wasser für Zeiten hohen Bedarfs. Die Komplexität von MAR-Anlagen macht ihre Planung und Umsetzung kompliziert und erfordert eine umfassende Bewertung der lokalen hydrogeologischen und hydrogeochemischen Bedingungen. Trotz der weltweiten Implementierung von MAR ist dessen Planung wenig reguliert. Umfassende Planungs- und Gestaltungsrichtlinien sind rar. Der Einsatz unterstützender Werkzeuge, wie numerischer und physikalischer Modelle oder Geoinformationssysteme (GIS), nimmt bei der MAR-Planung zu, aber ihre Einsatzmöglichkeiten und ihre Anforderungen an die Anwendung spiegeln sich selten in den verfügbaren MAR-Richtlinien wider. Um das Anwendungspotential und die Vor- und Nachteile der Werkzeuge für die MAR-Planung darzustellen, wurden für diese Arbeit Recherchen über den bisherigen Einsatz der Werkzeuge durchgeführt. Zusätzlich wurden Vorschläge zur Erhöhung ihrer Anwendbarkeit für die MAR Planung gemacht. Der Schwerpunkt lag dabei auf Oberflächeninfiltrationsverfahren. GIS wird in keiner MAR-Richtlinie als Planungsinstrument erwähnt, obwohl es zunehmend für die MAR-Kartierung eingesetzt wird. Eine Recherche über GIS-basierte MAR-Eignungsstudien zeigte, dass der MAR-Kartierungsprozess standardisiert werden kann mittels des oft genutzten Ansatzes: initiales Ausschneiden von Gebieten, welche Restriktionen unterliegen, dem folgend die Eignungskartierung mittels Paarvergleich für die Wichtung der GIS-Karten und der gewichteten Linearkombination als Entscheidungsregel, sowie eine abschließende Sensitivitätsanalyse. Die Standardisierung der Methodik könnte die Zuverlässigkeit und Vergleichbarkeit von MAR-Karten aufgrund des gemeinsamen methodischen Ansatzes erhöhen. Daher wurde die standardisierte Methodik in ein Web-GIS integriert, das über einen definierten Workflow die MAR-Kartierung vereinfacht. Numerische Modelle werden häufig für die Beurteilung von MAR-Systemen verwendet und sind in einigen MAR-Planungsrichtlinien ausgewiesen. Es wurden jedoch nur wenige Studien gefunden, die die Modelle der ungesättigten Zone für die Planung und Gestaltung von MAR Standorten verwendeten. Die in dieser Arbeit durchgeführte Literaturrecherche und eine darauf aufbauende Fallstudie zeigen, dass die numerische Modellierung viele Vorteile bietet, wie z. B. beim Design eines Monitoring-Netzwerkes oder bei der Planung von Infiltrationsszenarien. Physikalische Modelle, die für die MAR-Planung verwendet werden, sind meist Feld- oder Pilotversuche, da einige MAR-Gesetzgebungen Pilotstandorte im Rahmen der Vorabbewertung verlangen. Laborexperimente werden seltener eingesetzt und beschränken sich meist auf die Analyse sehr spezifischer Fragestellungen, wie z.B. der Kolmatierung. Diese Arbeit beschäftigt sich mit der Skalierbarkeit von Laborergebnissen auf die Feldskale, indem sie Ergebnisse aus drei physikalischen Modellen verschiedener Maßstäbe und Dimensionen vergleicht. Die Ergebnisse deuten darauf hin, dass Makroporen, Lufteinschlüsse und der Einfluss der Randbedingungen die quantitative Aussagekraft von Laborversuchen einschränken. Der Einsatz von 3D-Tanks anstelle von 1D-Bodensäulen oder von statistischen Indikatoren ist ein Mittel zur Erhöhung der Repräsentativität von Labormessungen. Nichtsdestotrotz hat die Anwendung physikalischerModelle das Potenzial, die MAR-Planung in Bezug auf detaillierte Prozessbewertung, Szenarien und Sensitivitätsanalysen zu unterstützen. Alle beschriebenen Instrumente haben ihre Vorzüge bei der Bewertung von MAR-Anlagen und sollten in MAR-Richtlinien detaillierter berücksichtigt werden, indem ihr Anwendungspotenzial, ihre Vor- und ihre Nachteile dargestellt werden. Die für diese Arbeit zusammengestellten Informationen sind ein Schritt zur Förderung der beschriebenen Planungsinstrumente für die Planung und Gestaltung von MAR-Anlagen.:1 Introduction 1.1 Motivation 1.2 Objectives 1.3 Structure of the thesis 2 Status quo of the planning process of MAR schemes 2.1 Guidance documents on general MAR planning 2.2 Application of GIS, numerical and physical models for MAR planning 2.3 Planning of surface infiltration schemes 3 Using GIS for the planning of MAR schemes 3.1 Implications from GIS-MCDA studies for MAR mapping 3.2 Development of web tools for MAR suitability mapping 4 Using numerical models for the planning of MAR schemes 4.1 Review on the use of numerical models for the design and optimization of MAR schemes 4.2 Planning a small-scale MAR scheme through vadose zone modelling 5 Using physical models for the planning of MAR schemes 5.1 Design of the experimental study 5.2 Comparison of three different physical models for MAR planning 6 Discussion and research perspectives 7 Bibliography 8 Appendi

    Cybersickness in Virtual Reality Questionnaire (CSQ-VR):A validation and comparison against SSQ and VRSQ

    Get PDF
    Cybersickness is a drawback of virtual reality (VR), which also affects the cognitive and motor skills of the users. The Simulator Sickness Questionnaire (SSQ), and its variant, the Virtual Reality Sickness Questionnaire (VRSQ) are two tools that measure cybersickness. However, both tools suffer from important limitations, which raises concerns about their suitability. Two versions of the Cybersickness in VR Questionnaire (CSQ-VR), a paper-and-pencil and a 3D –VR version, were developed. Validation and comparison of CSQ-VR against SSQ and VRSQ were performed. Thirty-nine participants were exposed to 3 rides with linear and angular accelerations in VR. Assessments of cognitive and psychomotor skills were performed at baseline and after each ride. The validity of both versions of CSQ_VR was confirmed. Notably, CSQ-VR demonstrated substantially better internal consistency than both SSQ and VRSQ. Also, CSQ-VR scores had significantly better psychometric properties in detecting a temporary decline in performance due to cybersickness. Pupil size was a significant predictor of cybersickness intensity. In conclusion, the CSQ-VR is a valid assessment of cybersickness, with superior psychometric properties to SSQ and VRSQ. The CSQ-VR enables the assessment of cybersickness during VR exposure, and it benefits from examining pupil size, a biomarker of cybersickness.  </p

    Odometria visual monocular em robôs para a agricultura com camara(s) com lentes "olho de peixe"

    Get PDF
    One of the main challenges in robotics is to develop accurate localization methods that achieve acceptable runtime performances.One of the most common approaches is to use Global Navigation Satellite System such as GPS to localize robots.However, satellite signals are not full-time available in some kind of environments.The purpose of this dissertation is to develop a localization system for a ground robot.This robot is inserted in a project called RoMoVi and is intended to perform tasks like crop monitoring and harvesting in steep slope vineyards.This vineyards are localized in the Douro region which are characterized by the presence of high hills.Thus, the context of RoMoVi is not prosperous for the use of GPS-based localization systems.Therefore, the main goal of this work is to create a reliable localization system based on vision techniques and low cost sensors.To do so, a Visual Odometry system will be used.The concept of Visual Odometry is equivalent to wheel odometry but it has the advantage of not suffering from wheel slip which is present in these kind of environments due to the harsh terrain conditions.Here, motion is tracked computing the homogeneous transformation between camera frames, incrementally.However, this approach also presents some open issues.Most of the state of art methods, specially those who present a monocular camera system, don't perform good motion estimations in pure rotations.In some of them, motion even degenerates in these situations.Also, computing the motion scale is a difficult task that is widely investigated in this field.This work is intended to solve these issues.To do so, fisheye lens cameras will be used in order to achieve wide vision field of views

    Augmenting spaces and creating interactive experiences using video camera networks

    Get PDF
    This research addresses the problem of creating interactive experiences to encourage people to explore spaces. Besides the obvious spaces to visit, such as museums or art galleries, spaces that people visit can be, for example, a supermarket or a restaurant. As technology evolves, people become more demanding in the way they use it and expect better forms of interaction with the space that surrounds them. Interaction with the space allows information to be transmitted to the visitors in a friendly way, leading visitors to explore it and gain knowledge. Systems to provide better experiences while exploring spaces demand hardware and software that is not in the reach of every space owner either because of the cost or inconvenience of the installation, that can damage artefacts or the space environment. We propose a system adaptable to the spaces, that uses a video camera network and a wi-fi network present at the space (or that can be installed) to provide means to support interactive experiences using the visitor’s mobile device. The system is composed of an infrastructure (called vuSpot), a language grammar used to describe interactions at a space (called XploreDescription), a visual tool used to design interactive experiences (called XploreBuilder) and a tool used to create interactive experiences (called urSpace). By using XploreBuilder, a tool built of top of vuSpot, a user with little or no experience in programming can define a space and design interactive experiences. This tool generates a description of the space and of the interactions at that space (that complies with the XploreDescription grammar). These descriptions can be given to urSpace, another tool built of top of vuSpot, that creates the interactive experience application. With this system we explore new forms of interaction and use mobile devices and pico projectors to deliver additional information to the users leading to the creation of interactive experiences. The several components are presented as well as the results of the respective user tests, which were positive. The design and implementation becomes cheaper, faster, more flexible and, since it does not depend on the knowledge of a programming language, accessible for the general public.NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), Multimodal Systems, Departamento de Informática (DI), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL) and Escola Superior de Tecnologia de Setúbal (EST Setúbal), Instituto Politécnico de Setúbal (IPS)

    "Arte Factus" : estudo e co-design socialmente consciente de artefatos digitais socioenativos

    Get PDF
    Orientador: Maria Cecília Calani BaranauskasTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Atualmente, a tecnologia computacional tornou-se cada vez mais pervasiva por meio de computadores de diferentes tamanhos, formas e capacidades. Mas avanços tecnológicos, embora necessários, não são suficientes para tornar a interação com tecnologia computacional mais transparente, como preconizado pela computação ubíqua. Sistemas computacionais atuais ainda exigem um vocabulário técnico de entradas e saídas para serem utilizados. No campo da Interação Humano-Computador (IHC), a adoção da teoria da cognição enativa pode lançar luz sobre um novo paradigma de interação que preenche a lacuna entre ação e percepção. Sistemas computacionais enativos são um promissor tema de pesquisa, mas seu design e avaliação ainda são pouco explorados. Além disso, sistemas enativos, como já proposto na literatura, carecem de consideração do contexto social. O objetivo desta tese de doutorado é contribuir para o design de tecnologia computacional dentro de uma abordagem da cognição enativa, além de também sensível à aspectos sociais. Portanto, esta tese investiga os conceitos de sistemas enativos e socioenativos por meio do co-design de arte interativa e instalações. Para atingir esse objetivo, é proposto um arcabouço teórico-metodológico chamado "Arte Factus" para apoiar o estudo e o co-design socialmente consciente de artefatos digitais. O arcabouço "Arte Factus" foi utilizado em três estudos de design relatados nesta tese: InterArt, InstInt e InsTime. Esses estudos envolveram a participação de 105 estudantes de graduação e pós-graduação em Ciência da Computação e Engenharia de Computação no co-design de 19 instalações. O processo envolveu o uso de tecnologia pervasiva do tipo Faça-Você-Mesmo ("Do-It-Yourself, DIY"), e algumas dessas instalações foram estudadas em oficinas de prática situada que ocorreram em cenários educacionais (escola e museu exploratório de ciências). O arcabouço "Arte Factus", como a principal contribuição desta tese de doutorado, mostrou-se eficaz no apoio ao co-design socialmente consciente de instalações interativas que materializam o conceito de artefatos digitais socioenativos. Além disso, através do estudo dos artefatos criados no contexto desta investigação, esta tese também contribui para a construção teórica do conceito de sistemas socioenativosAbstract: Currently, computational technology has become more and more pervasive with computers of different sizes, shapes, and capacities. But technological advancements, although necessary, are not enough to make the interaction with computational technology more transparent, as preconized by the ubiquitous computing. Current computational systems still require a technical vocabulary of inputs and outputs to be interacted with. Within the field of Human-Computer Interaction (HCI), the adoption of the enactive cognition theory can shed light on a new interaction paradigm that bridges the gap between action and perception. Enactive computational systems are a promising subject of research, but their design and evaluation are still hardly explored. Furthermore, enactive systems as already proposed in the literature lack a social context consideration. The objective of this doctoral thesis is to contribute towards the design of computational technology within an enactive approach to cognition, while also being sensitive to social aspects. Therefore, this thesis investigates the concepts of enactive and socioenactive systems by enabling the co-design of interactive art installations. To achieve this objective, a theoretical-methodological framework named "Arte Factus" is proposed to support the study and socially aware co-design of digital artifacts. The "Arte Factus" framework was used in three design studies reported in this thesis: InterArt, InstInt, and InsTime. These studies involved the participation of 105 Computer Science and Computer Engineering undergraduate and graduate students in the co-design of 19 installations. The process involved the use of pervasive "Do-It-Yourself" (DIY) technology, and some of these installations were further studied in workshops of situated practice that took place in educational scenarios (school and exploratory science museum). The "Arte Factus" framework, as the main contribution of this doctoral thesis, has shown effective in supporting the socially aware co-design of interactive installations that materialize the concept of socioenactive digital artifacts. Moreover, through the study of the artifacts created in the context of this investigation, this thesis also contributes towards the theoretical construction of the concept of socioenactive systemsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2017/06762-0FAPESPCAPE

    Virtual Guidance using Mixed Reality in Historical Places and Museums

    Get PDF
    Mixed Reality (MR) is one of the most disruptive technologies that shows potential in many application domains, particularly in the tourism and cultural heritage sector. MR using the latest headsets with the highest capabilities introduces a new visual platform that can change people’s visual experience. This thesis introduces a HoloLens-based mixed reality guidance system for museums and historical places. This new guidance form considers the inclusiveness of the necessary and optimised functionalities, visual and audio guiding abilities, essential roles of a guide, and the related social interactions in the real-time. A mixed reality guide, dubbed ‘MuseumEye’ was designed and developed for the Egyptian Museum in Cairo, to overcome challenges currently facing the museum, e.g. lack of guiding methods, limited information signposted on the exhibits, lack of visitor engagement resulting in less time spent in the museum compared to other museums with similar capacity and significance. These problems motivated the researcher to conduct an exploratory study to investigate the museum environment and guiding methods by interviewing 10 participants and observing 20 visitors. ‘MuseumEye’ was built based on a literature review of immersive systems in museums and the findings of an exploratory study that reveals visitor behaviours and the nature of guidance in the museum. This project increased levels of engagement and the length of time visitors spend in museums, the Egyptian Museum in Cairo in particular, using the mixed reality technology that provides visitors with additional visual, audio information and computer-generated images at various levels of details and via different media. This research introduces the guidelines of designing immersive reality guide applications using the techniques of spatial mapping, designing the multimedia and UI, and designing interactions for exploratory purposes. The main contributions of this study include various theoretical contributions: 1) creating a new form of guidance that enhances the museum experience through developing a mixed reality system; 2) a theoretical framework that assesses mixed reality guidance systems in terms of perceived usefulness, ease of use, enjoyment, interactivity, the roles of a guide and the likelihood of future use; 3) the Ambient Information Visualisation Concept for increasing visitor engagement through better presenting information and enhancing communication and interaction between visitors and exhibits; and a practical contribution in creating a mixed reality guidance system that reshapes the museum space, enhances visitors’ experience and significantly increases the length of time they spend in the museum. The evaluation comprised of quantitative surveys (171 participants and 9 experts) and qualitative observation (51 participants) using MuseumEye in their tours. The results showed positive responses for all measured aspects and compares these to similar studies. The observation results showed that visitors who use MuseumEye spent four times the duration visitors spent without guides or with human guides in front of exhibited items. The quantitative results showed significant correlations between the measured constructs (perceived usefulness, ease of use, enjoyment, multimedia and UI, interactivity) and the likelihood of future use when the roles of guide mediate the relations. Moreover, the ‘perceived guidance’ is the most influential construct on the likelihood of future use of MuseumEye. The results also revealed a high likelihood of future use, which ensures the sustainability of adopting mixed reality technology in museums. This thesis shows the potential of mixed reality guides in the museum sector that reshape the museum space and offers endless possibilities for museums and heritage sites

    Virtual Guidance using Mixed Reality in Historical Places and Museums

    Get PDF
    Mixed Reality (MR) is one of the most disruptive technologies that shows potential in many application domains, particularly in the tourism and cultural heritage sector. MR using the latest headsets with the highest capabilities introduces a new visual platform that can change people’s visual experience. This thesis introduces a HoloLens-based mixed reality guidance system for museums and historical places. This new guidance form considers the inclusiveness of the necessary and optimised functionalities, visual and audio guiding abilities, essential roles of a guide, and the related social interactions in the real-time. A mixed reality guide, dubbed ‘MuseumEye’ was designed and developed for the Egyptian Museum in Cairo, to overcome challenges currently facing the museum, e.g. lack of guiding methods, limited information signposted on the exhibits, lack of visitor engagement resulting in less time spent in the museum compared to other museums with similar capacity and significance. These problems motivated the researcher to conduct an exploratory study to investigate the museum environment and guiding methods by interviewing 10 participants and observing 20 visitors. ‘MuseumEye’ was built based on a literature review of immersive systems in museums and the findings of an exploratory study that reveals visitor behaviours and the nature of guidance in the museum. This project increased levels of engagement and the length of time visitors spend in museums, the Egyptian Museum in Cairo in particular, using the mixed reality technology that provides visitors with additional visual, audio information and computer-generated images at various levels of details and via different media. This research introduces the guidelines of designing immersive reality guide applications using the techniques of spatial mapping, designing the multimedia and UI, and designing interactions for exploratory purposes. The main contributions of this study include various theoretical contributions: 1) creating a new form of guidance that enhances the museum experience through developing a mixed reality system; 2) a theoretical framework that assesses mixed reality guidance systems in terms of perceived usefulness, ease of use, enjoyment, interactivity, the roles of a guide and the likelihood of future use; 3) the Ambient Information Visualisation Concept for increasing visitor engagement through better presenting information and enhancing communication and interaction between visitors and exhibits; and a practical contribution in creating a mixed reality guidance system that reshapes the museum space, enhances visitors’ experience and significantly increases the length of time they spend in the museum. The evaluation comprised of quantitative surveys (171 participants and 9 experts) and qualitative observation (51 participants) using MuseumEye in their tours. The results showed positive responses for all measured aspects and compares these to similar studies. The observation results showed that visitors who use MuseumEye spent four times the duration visitors spent without guides or with human guides in front of exhibited items. The quantitative results showed significant correlations between the measured constructs (perceived usefulness, ease of use, enjoyment, multimedia and UI, interactivity) and the likelihood of future use when the roles of guide mediate the relations. Moreover, the ‘perceived guidance’ is the most influential construct on the likelihood of future use of MuseumEye. The results also revealed a high likelihood of future use, which ensures the sustainability of adopting mixed reality technology in museums. This thesis shows the potential of mixed reality guides in the museum sector that reshape the museum space and offers endless possibilities for museums and heritage sites

    Cybersecurity and safety analysis in online social networks

    Full text link
    The research work deal with the security and safety issues related to the use of online social networks and it successfully presented AI-based solutions to address these issues in online social networks
    corecore