31,728 research outputs found

    The Seedling Sanctuary: Automated Cold Frame for Gardner Elementary

    Get PDF
    The purpose of this report is to provide the details of the Seedling Sanctuary, a mechanical engineering senior design project. The project in question is an automated cold frame designed specifically for Gardner Academy, a local elementary school in San Jose. A cold frame is a miniature greenhouse that opens like a chest and is made from clear plastic. Automated ventilation and watering systems create a microclimate within this greenhouse structure to create the ideal growing conditions for seeds. The main purposes of the cold frame are to lengthen the growing season, be maintenance free, and enhance garden education. From testing, the project goals were verified to have been achieved through several performance metrics. First, the system’s ability to lengthen the growing season is dependent on germinating seedlings that can be planted earlier in the season. The automated system maintained the seedlings at the proper soil moisture levels to grow. The system also implemented passive temperature control systems to maintain the plants in ideal conditions. With the ventilation and thermal mass, the system is able to be cooler at the hottest times of day and warmer at night than unprotected plants. The system has also successfully automated the care of the seedlings, achieving our goal of being maintenance free. Finally, the enhancement of garden education was incorporated through community engagement with the design and building of the cold frame, as well as the Bluetooth application which will be used in the school curriculum

    Ten Quick Tips for Using a Raspberry Pi

    Full text link
    Much of biology (and, indeed, all of science) is becoming increasingly computational. We tend to think of this in regards to algorithmic approaches and software tools, as well as increased computing power. There has also been a shift towards slicker, packaged solutions--which mirrors everyday life, from smart phones to smart homes. As a result, it's all too easy to be detached from the fundamental elements that power these changes, and to see solutions as "black boxes". The major goal of this piece is to use the example of the Raspberry Pi--a small, general-purpose computer--as the central component in a highly developed ecosystem that brings together elements like external hardware, sensors and controllers, state-of-the-art programming practices, and basic electronics and physics, all in an approachable and useful way. External devices and inputs are easily connected to the Pi, and it can, in turn, control attached devices very simply. So whether you want to use it to manage laboratory equipment, sample the environment, teach bioinformatics, control your home security or make a model lunar lander, it's all built from the same basic principles. To quote Richard Feynman, "What I cannot create, I do not understand".Comment: 12 pages, 2 figure

    Environmental Control for Persons with Disabilities

    Get PDF
    This project researched available environmental control units (ECUs) designed to electronically aid persons with disabilities in their daily lives. Working from literature, interviews, and hands-on experience with the technologies, we use a simple environmental control technology (X-10) to develop reconfigurable laboratory modules that can be used in ME3506 (Rehabilitation Engineering) to demonstrate different aspects of environmental control to WPI students and create tutorials to introduce other people, specifically health care professionals such as physical therapists, to environmental control technologies for use by persons with disabilities

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Illinois Technograph v. 078, iss. 6 Mar. 1963

    Get PDF
    published or submitted for publicatio

    A Defensive Driving Course for the Language Lab

    Get PDF

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    Get PDF
    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept
    corecore