1,129 research outputs found

    On the Relationship between Consistent Query Answering and Constraint Satisfaction Problems

    Get PDF
    Recently, Fontaine has pointed out a connection between consistent query answering (CQA) and constraint satisfaction problems (CSP) [Fontaine, LICS 2013]. We investigate this connection more closely, identifying classes of CQA problems based on denial constraints and GAV constraints that correspond exactly to CSPs in the sense that a complexity classification of the CQA problems in each class is equivalent (up to FO-reductions) to classifying the complexity of all CSPs. We obtain these classes by admitting only monadic relations and only a single variable in denial constraints/GAVs and restricting queries to hypertree UCQs. We also observe that dropping the requirement of UCQs to be hypertrees corresponds to transitioning from CSP to its logical generalization MMSNP and identify a further relaxation that corresponds to transitioning from MMSNP to GMSNP (also know as MMSNP_2). Moreover, we use the CSP connection to carry over decidability of FO-rewritability and Datalog-rewritability to some of the identified classes of CQA problems

    Query Answering in Probabilistic Data and Knowledge Bases

    Get PDF
    Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory

    Elements of Finite Model Theory [book review]

    Get PDF

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201
    • …
    corecore