280 research outputs found

    Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations

    Get PDF
    There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin's conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this paper, we shall give an overview of some work that has been done on Martin's conjecture, and applications that it has had in descriptive set theory. We will present a long unpublished result of Slaman and Steel that arithmetic equivalence is a universal countable Borel equivalence relation. This theorem has interesting corollaries for the theory of universal countable Borel equivalence relations in general. We end with some open problems, and directions for future research.Comment: Corrected typo

    Independence, Relative Randomness, and PA Degrees

    Full text link
    We study pairs of reals that are mutually Martin-L\"{o}f random with respect to a common, not necessarily computable probability measure. We show that a generalized version of van Lambalgen's Theorem holds for non-computable probability measures, too. We study, for a given real AA, the \emph{independence spectrum} of AA, the set of all BB so that there exists a probability measure μ\mu so that μ{A,B}=0\mu\{A,B\} = 0 and (A,B)(A,B) is μ×μ\mu\times\mu-random. We prove that if AA is r.e., then no Δ20\Delta^0_2 set is in the independence spectrum of AA. We obtain applications of this fact to PA degrees. In particular, we show that if AA is r.e.\ and PP is of PA degree so that P̸≥TAP \not\geq_{T} A, then A⊕P≥T0′A \oplus P \geq_{T} 0'

    Computational universes

    Full text link
    Suspicions that the world might be some sort of a machine or algorithm existing ``in the mind'' of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.Comment: Several corrections of typos and smaller revisions, final versio

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (∀x ∃y A(x,y))⇒∃w ∀x A(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (∀x ∃y A(x,y))⇒∃z ∀x ∃y (y≤T(x,z)∧A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page
    • …
    corecore