12,015 research outputs found

    Turing Automata and Graph Machines

    Full text link
    Indexed monoidal algebras are introduced as an equivalent structure for self-dual compact closed categories, and a coherence theorem is proved for the category of such algebras. Turing automata and Turing graph machines are defined by generalizing the classical Turing machine concept, so that the collection of such machines becomes an indexed monoidal algebra. On the analogy of the von Neumann data-flow computer architecture, Turing graph machines are proposed as potentially reversible low-level universal computational devices, and a truly reversible molecular size hardware model is presented as an example

    BUSM News and Notes

    Get PDF
    Monthly newsletter providing updates of interest to the Boston University School of Medicine community

    A generalized characterization of algorithmic probability

    Get PDF
    An a priori semimeasure (also known as "algorithmic probability" or "the Solomonoff prior" in the context of inductive inference) is defined as the transformation, by a given universal monotone Turing machine, of the uniform measure on the infinite strings. It is shown in this paper that the class of a priori semimeasures can equivalently be defined as the class of transformations, by all compatible universal monotone Turing machines, of any continuous computable measure in place of the uniform measure. Some consideration is given to possible implications for the prevalent association of algorithmic probability with certain foundational statistical principles
    • …
    corecore